Suppr超能文献

使用特征表示学习和机器学习算法对群体感应肽进行比较分析和预测。

Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms.

作者信息

Wei Leyi, Hu Jie, Li Fuyi, Song Jiangning, Su Ran, Zou Quan

机构信息

School of Computer Science and Technology, Tianjin University, Tianjin, China.

Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.

出版信息

Brief Bioinform. 2020 Jan 17;21(1):106-119. doi: 10.1093/bib/bby107.

Abstract

Quorum-sensing peptides (QSPs) are the signal molecules that are closely associated with diverse cellular processes, such as cell-cell communication, and gene expression regulation in Gram-positive bacteria. It is therefore of great importance to identify QSPs for better understanding and in-depth revealing of their functional mechanisms in physiological processes. Machine learning algorithms have been developed for this purpose, showing the great potential for the reliable prediction of QSPs. In this study, several sequence-based feature descriptors for peptide representation and machine learning algorithms are comprehensively reviewed, evaluated and compared. To effectively use existing feature descriptors, we used a feature representation learning strategy that automatically learns the most discriminative features from existing feature descriptors in a supervised way. Our results demonstrate that this strategy is capable of effectively capturing the sequence determinants to represent the characteristics of QSPs, thereby contributing to the improved predictive performance. Furthermore, wrapping this feature representation learning strategy, we developed a powerful predictor named QSPred-FL for the detection of QSPs in large-scale proteomic data. Benchmarking results with 10-fold cross validation showed that QSPred-FL is able to achieve better performance as compared to the state-of-the-art predictors. In addition, we have established a user-friendly webserver that implements QSPred-FL, which is currently available at http://server.malab.cn/QSPred-FL. We expect that this tool will be useful for the high-throughput prediction of QSPs and the discovery of important functional mechanisms of QSPs.

摘要

群体感应肽(QSPs)是与多种细胞过程密切相关的信号分子,如革兰氏阳性菌中的细胞间通讯和基因表达调控。因此,识别QSPs对于更好地理解和深入揭示其在生理过程中的功能机制具有重要意义。为此已开发了机器学习算法,显示出可靠预测QSPs的巨大潜力。在本研究中,对几种基于序列的肽表示特征描述符和机器学习算法进行了全面回顾、评估和比较。为了有效利用现有特征描述符,我们采用了一种特征表示学习策略,该策略以监督方式自动从现有特征描述符中学习最具判别力的特征。我们的结果表明,该策略能够有效捕捉序列决定因素以表征QSPs的特征,从而有助于提高预测性能。此外,围绕这种特征表示学习策略,我们开发了一种名为QSPred-FL的强大预测器,用于在大规模蛋白质组学数据中检测QSPs。10折交叉验证的基准测试结果表明,与现有最佳预测器相比,QSPred-FL能够实现更好的性能。此外,我们建立了一个实现QSPred-FL的用户友好型网络服务器,目前可在http://server.malab.cn/QSPred-FL上获取。我们期望该工具将有助于QSPs的高通量预测以及QSPs重要功能机制 的发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验