Suppr超能文献

用于探索革兰氏阳性菌中肽-膜相互作用的计算工具。

Computational tools for exploring peptide-membrane interactions in gram-positive bacteria.

作者信息

Kumar Shreya, Balaya Rex Devasahayam Arokia, Kanekar Saptami, Raju Rajesh, Prasad Thottethodi Subrahmanya Keshava, Kandasamy Richard K

机构信息

Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore 575018, India.

Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.

出版信息

Comput Struct Biotechnol J. 2023 Mar 2;21:1995-2008. doi: 10.1016/j.csbj.2023.02.051. eCollection 2023.

Abstract

The vital cellular functions in Gram-positive bacteria are controlled by signaling molecules known as quorum sensing peptides (QSPs), considered promising therapeutic interventions for bacterial infections. In the bacterial system QSPs bind to membrane-coupled receptors, which then auto-phosphorylate and activate intracellular response regulators. These response regulators induce target gene expression in bacteria. One of the most reliable trends in drug discovery research for virulence-associated molecular targets is the use of peptide drugs or new functionalities. In this perspective, computational methods act as auxiliary aids for biologists, where methodologies based on machine learning and analysis are developed as suitable tools for target peptide identification. Therefore, the development of quick and reliable computational resources to identify or predict these QSPs along with their receptors and inhibitors is receiving considerable attention. The databases such as Quorumpeps and Quorum Sensing of Human Gut Microbes (QSHGM) provide a detailed overview of the structures and functions of QSPs. The tools and algorithms such as QSPpred, QSPred-FL, iQSP, EnsembleQS and PEPred-Suite have been used for the generic prediction of QSPs and feature representation. The availability of compiled key resources for utilizing peptide features based on amino acid composition, positional preferences, and motifs as well as structural and physicochemical properties, including biofilm inhibitory peptides, can aid in elucidating the QSP and membrane receptor interactions in infectious Gram-positive pathogens. Herein, we present a comprehensive survey of diverse computational approaches that are suitable for detecting QSPs and QS interference molecules. This review highlights the utility of these methods for developing potential biomarkers against infectious Gram-positive pathogens.

摘要

革兰氏阳性菌中重要的细胞功能由称为群体感应肽(QSPs)的信号分子控制,QSPs被认为是治疗细菌感染的有前景的干预手段。在细菌系统中,QSPs与膜偶联受体结合,然后受体自身磷酸化并激活细胞内反应调节因子。这些反应调节因子诱导细菌中的靶基因表达。针对与毒力相关的分子靶点的药物发现研究中,最可靠的趋势之一是使用肽类药物或新功能。从这个角度来看,计算方法可作为生物学家的辅助工具,基于机器学习和分析的方法被开发为识别靶肽的合适工具。因此,开发快速可靠的计算资源来识别或预测这些QSPs及其受体和抑制剂受到了相当大的关注。诸如Quorumpeps和人类肠道微生物群体感应(QSHGM)等数据库提供了QSPs结构和功能的详细概述。诸如QSPpred、QSPred-FL、iQSP、EnsembleQS和PEPred-Suite等工具和算法已用于QSPs的通用预测和特征表示。利用基于氨基酸组成、位置偏好、基序以及结构和物理化学性质(包括生物膜抑制肽)的肽特征的汇编关键资源的可用性,有助于阐明感染性革兰氏阳性病原体中QSP与膜受体的相互作用。在此,我们对适用于检测QSPs和群体感应干扰分子的各种计算方法进行了全面综述。本综述强调了这些方法在开发针对感染性革兰氏阳性病原体的潜在生物标志物方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9eb/10025024/2e6c9c0362f0/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验