文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用不同体位的反射式光电容积脉搏波测量即时呼吸率的验证。

Validation of Instantaneous Respiratory Rate Using Reflectance PPG from Different Body Positions.

机构信息

Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK.

出版信息

Sensors (Basel). 2018 Oct 31;18(11):3705. doi: 10.3390/s18113705.


DOI:10.3390/s18113705
PMID:30384462
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6264115/
Abstract

Respiratory rate (RR) is a key parameter used in healthcare for monitoring and predicting patient deterioration. However, continuous and automatic estimation of this parameter from wearable sensors is still a challenging task. Various methods have been proposed to estimate RR from wearable sensors using windowed segments of the data; e.g., often using a minimum of 32 s. Little research has been reported in the literature concerning the instantaneous detection of respiratory rate from such sources. In this paper, we develop and evaluate a method to estimate instantaneous respiratory rate (IRR) from body-worn reflectance photoplethysmography (PPG) sensors. The proposed method relies on a nonlinear time-frequency representation, termed the wavelet synchrosqueezed transform (WSST). We apply the latter to derived modulations of the PPG that arise from the act of breathing.We validate the proposed algorithm using (i) a custom device with a PPG probe placed on various body positions and (ii) a commercial wrist-worn device (WaveletHealth Inc., Mountain View, CA, USA). Comparator reference data were obtained via a thermocouple placed under the nostrils, providing ground-truth information concerning respiration cycles. Tracking instantaneous frequencies was performed in the joint time-frequency spectrum of the (4 Hz re-sampled) respiratory-induced modulation using the WSST, from data obtained from 10 healthy subjects. The estimated instantaneous respiratory rates have shown to be highly correlated with breath-by-breath variations derived from the reference signals. The proposed method produced more accurate results compared to averaged RR obtained using 32 s windows investigated with overlap between successive windows of (i) zero and (ii) 28 s. For a set of five healthy subjects, the averaged similarity between reference RR and instantaneous RR, given by the longest common subsequence (LCSS) algorithm, was calculated as 0.69; this compares with averaged similarity of 0.49 using 32 s windows with 28 s overlap between successive windows. The results provide insight into estimation of IRR and show that upper body positions produced PPG signals from which a better respiration signal was extracted than for other body locations.

摘要

呼吸频率 (RR) 是医疗保健中用于监测和预测患者病情恶化的关键参数。然而,从可穿戴传感器连续自动估计该参数仍然是一项具有挑战性的任务。已经提出了各种方法来使用数据的窗口段从可穿戴传感器估计 RR;例如,通常使用至少 32 秒。文献中很少有关于从这些来源即时检测呼吸率的研究报告。在本文中,我们开发并评估了一种从佩戴的反射光体积描记图 (PPG) 传感器估计即时呼吸率 (IRR) 的方法。该方法依赖于一种称为小波同步挤压变换 (WSST) 的非线性时频表示。我们将后者应用于源自呼吸的 PPG 的衍生调制。我们使用 (i) 带有放置在不同身体位置的 PPG 探头的定制设备和 (ii) 商业腕戴设备 (WaveletHealth Inc.,加利福尼亚州山景城) 来验证所提出的算法。比较器参考数据是通过放置在鼻孔下的热电偶获得的,提供了有关呼吸周期的真实信息。使用 WSST 在 (4 Hz 重采样) 呼吸诱导调制的联合时频谱中对瞬时频率进行跟踪,从 10 位健康受试者获得的数据中进行。所估计的瞬时呼吸率与参考信号得出的呼吸逐次变化高度相关。与使用调查重叠为 (i) 零和 (ii) 28 s 的 32 s 窗口获得的平均 RR 相比,所提出的方法产生了更准确的结果。对于一组五个健康受试者,通过最长公共子序列 (LCSS) 算法计算的参考 RR 和瞬时 RR 之间的平均相似性为 0.69;这与使用重叠为 28 s 的 32 s 窗口的平均相似性为 0.49 相比。结果提供了对 IRR 估计的深入了解,并表明与其他身体位置相比,上半身位置产生的 PPG 信号从中提取了更好的呼吸信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/4f666a5c4633/sensors-18-03705-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/1a051881a5f5/sensors-18-03705-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/dfcb596c0faf/sensors-18-03705-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/875d1e099cde/sensors-18-03705-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/6d68d600c98c/sensors-18-03705-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/b3a95d85f2fc/sensors-18-03705-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/3abe3f60288d/sensors-18-03705-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/1ef9515bfce5/sensors-18-03705-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/5c7420bb4134/sensors-18-03705-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/360ee96632d3/sensors-18-03705-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/26e1bed36d92/sensors-18-03705-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/4f666a5c4633/sensors-18-03705-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/1a051881a5f5/sensors-18-03705-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/dfcb596c0faf/sensors-18-03705-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/875d1e099cde/sensors-18-03705-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/6d68d600c98c/sensors-18-03705-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/b3a95d85f2fc/sensors-18-03705-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/3abe3f60288d/sensors-18-03705-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/1ef9515bfce5/sensors-18-03705-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/5c7420bb4134/sensors-18-03705-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/360ee96632d3/sensors-18-03705-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/26e1bed36d92/sensors-18-03705-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/6264115/4f666a5c4633/sensors-18-03705-g011.jpg

相似文献

[1]
Validation of Instantaneous Respiratory Rate Using Reflectance PPG from Different Body Positions.

Sensors (Basel). 2018-10-31

[2]
Estimating instantaneous respiratory rate from the photoplethysmogram.

Annu Int Conf IEEE Eng Med Biol Soc. 2015

[3]
A novel computational signal processing framework towards multimodal vital signs extraction using neck-worn wearable devices.

Sci Rep. 2024-9-27

[4]
Derivation of respiration rate from ambulatory ECG and PPG using Ensemble Empirical Mode Decomposition: Comparison and fusion.

Comput Biol Med. 2017-2-1

[5]
Acquiring Respiration Rate from Photoplethysmographic Signal by Recursive Bayesian Tracking of Intrinsic Modes in Time-Frequency Spectra.

Sensors (Basel). 2018-5-24

[6]
Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.

IEEE Trans Biomed Eng. 2017-9

[7]
Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.

Methods Inf Med. 2016-10-17

[8]
Fast and Robust Real-Time Estimation of Respiratory Rate from Photoplethysmography.

Sensors (Basel). 2016-9-14

[9]
An End-to-End and Accurate PPG-based Respiratory Rate Estimation Approach Using Cycle Generative Adversarial Networks.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[10]
An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal.

Annu Int Conf IEEE Eng Med Biol Soc. 2016-8

引用本文的文献

[1]
Quality-Aware Signal Processing Mechanism of PPG Signal for Long-Term Heart Rate Monitoring.

Sensors (Basel). 2024-6-16

[2]
Cuff-Less Blood Pressure Prediction Based on Photoplethysmography and Modified ResNet.

Bioengineering (Basel). 2023-3-24

[3]
PPG2EMG: Estimating Upper-Arm Muscle Activities and EMG from Wrist PPG Values.

Sensors (Basel). 2023-2-5

[4]
Feasibility of Electrodermal Activity and Photoplethysmography Data Acquisition at the Foot Using a Sock Form Factor.

Sensors (Basel). 2023-1-5

[5]
Comparison of Three Prototypes of PPG Sensors for Continual Real-Time Measurement in Weak Magnetic Field.

Sensors (Basel). 2022-5-16

[6]
Breathing Rate Estimation from Head-Worn Photoplethysmography Sensor Data Using Machine Learning.

Sensors (Basel). 2022-3-8

[7]
Wearable technology to inform the prediction and diagnosis of cardiorespiratory events: a scoping review.

PeerJ. 2021-12-22

[8]
Derivation of Respiratory Metrics in Health and Asthma.

Sensors (Basel). 2020-12-12

[9]
First-Step PPG Signal Analysis for Evaluation of Stress Induced during Scanning in the Open-Air MRI Device.

Sensors (Basel). 2020-6-22

本文引用的文献

[1]
Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review.

IEEE Rev Biomed Eng. 2017-10-24

[2]
How Nonlinear-Type Time-Frequency Analysis Can Help in Sensing Instantaneous Heart Rate and Instantaneous Respiratory Rate from Photoplethysmography in a Reliable Way.

Front Physiol. 2017-9-22

[3]
Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.

IEEE Trans Biomed Eng. 2017-9

[4]
Toward a Robust Estimation of Respiratory Rate From Pulse Oximeters.

IEEE Trans Biomed Eng. 2017-8

[5]
Respiratory rate and pulse oximetry derived information as predictors of hospital admission in young children in Bangladesh: a prospective observational study.

BMJ Open. 2016-8-17

[6]
An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram.

Physiol Meas. 2016-4

[7]
Estimating instantaneous respiratory rate from the photoplethysmogram.

Annu Int Conf IEEE Eng Med Biol Soc. 2015

[8]
Pulse oximetry-derived respiratory rate in general care floor patients.

J Clin Monit Comput. 2015-2

[9]
Non-contact video-based vital sign monitoring using ambient light and auto-regressive models.

Physiol Meas. 2014-5

[10]
Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence.

IEEE Trans Biomed Eng. 2014-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索