From the Department of Chemistry and Biochemistry, The City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031,.
the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461,; CIC bioGUNE, Derio, Vizcaya 48160, Spain.
J Biol Chem. 2018 Dec 28;293(52):20157-20168. doi: 10.1074/jbc.RA118.005791. Epub 2018 Nov 1.
Natural brown-black eumelanin pigments confer structural coloration in animals and potently block ionizing radiation and antifungal drugs. These functions also make them attractive for bioinspired materials design, including coating materials for drug-delivery vehicles, strengthening agents for adhesive hydrogel materials, and free-radical scavengers for soil remediation. Nonetheless, the molecular determinants of the melanin "developmental road traveled" and the resulting architectural features have remained uncertain because of the insoluble, heterogeneous, and amorphous characteristics of these complex polymeric assemblies. Here, we used 2D solid-state NMR, EPR, and dynamic nuclear polarization spectroscopic techniques, assisted in some instances by the use of isotopically enriched precursors, to address several open questions regarding the molecular structures and associated functions of eumelanin. Our findings uncovered: 1) that the identity of the available catecholamine precursor alters the structure of melanin pigments produced either in fungal cells or under cell-free conditions; 2) that the identity of the available precursor alters the scaffold organization and membrane lipid content of melanized fungal cells; 3) that the fungal cells are melanized preferentially by an l-DOPA precursor; and 4) that the macromolecular carbon- and nitrogen-based architecture of cell-free and fungal eumelanins includes indole, pyrrole, indolequinone, and open-chain building blocks that develop depending on reaction time. In conclusion, the availability of catecholamine precursors plays an important role in eumelanin development by affecting the efficacy of pigment formation, the melanin molecular structure, and its underlying scaffold in fungal systems.
天然的棕黑色真黑色素赋予了动物结构色,并能有效地阻挡电离辐射和抗真菌药物。这些功能也使它们成为仿生材料设计的理想选择,包括药物输送载体的涂层材料、增强型粘性水凝胶材料的增强剂以及土壤修复的自由基清除剂。尽管如此,由于这些复杂聚合物组装体的不溶性、异质性和非晶态特性,黑色素“发育途径”的分子决定因素及其产生的建筑特征仍然不确定。在这里,我们使用了 2D 固态 NMR、EPR 和动态核极化光谱技术,在某些情况下还使用了同位素富集的前体,来解决关于真黑色素的分子结构和相关功能的几个悬而未决的问题。我们的研究结果揭示了:1)可用儿茶酚胺前体的身份改变了在真菌细胞中或无细胞条件下产生的黑色素颜料的结构;2)可用前体的身份改变了黑色素化真菌细胞的支架组织和膜脂含量;3)真菌细胞优先被 l-DOPA 前体黑色素化;4)无细胞和真菌真黑色素的高分子碳和氮基架构包括吲哚、吡咯、吲哚醌和开链结构单元,这些结构单元是根据反应时间发展而来的。总之,儿茶酚胺前体的可用性通过影响色素形成的效果、黑色素的分子结构及其在真菌系统中的基础支架,在真黑色素的发育中起着重要作用。