Suppr超能文献

预测重症监护患者的压疮:一种机器学习模型。

Predicting Pressure Injury in Critical Care Patients: A Machine-Learning Model.

机构信息

Jenny Alderden is an assistant professor, School of Nursing, Boise State University, Boise, Idaho, and an adjunct assistant professor, College of Nursing, University of Utah, Salt Lake City, Utah. Ginette Alyce Pepper is a professor, and Andrew Wilson is a clinical assistant professor, College of Nursing, University of Utah. Joanne D. Whitney is a professor, College of Nursing, University of Washington, Seattle, Washington. Stephanie Richardson is a professor, Rocky Mountain University of the Health Professions, Provo, Utah. Ryan Butcher is a senior data architect, Biomedical Informatics Team, Center for Clinical and Translational Science, University of Utah. Yeonjung Jo is a doctoral (PhD) student in population health science, College of Nursing, University of Utah. Mollie Rebecca Cummins is a professor, College of Nursing, University of Utah.

出版信息

Am J Crit Care. 2018 Nov;27(6):461-468. doi: 10.4037/ajcc2018525.

Abstract

BACKGROUND

Hospital-acquired pressure injuries are a serious problem among critical care patients. Some can be prevented by using measures such as specialty beds, which are not feasible for every patient because of costs. However, decisions about which patient would benefit most from a specialty bed are difficult because results of existing tools to determine risk for pressure injury indicate that most critical care patients are at high risk.

OBJECTIVE

To develop a model for predicting development of pressure injuries among surgical critical care patients.

METHODS

Data from electronic health records were divided into training (67%) and testing (33%) data sets, and a model was developed by using a random forest algorithm via the R package "randomforest."

RESULTS

Among a sample of 6376 patients, hospital-acquired pressure injuries of stage 1 or greater (outcome variable 1) developed in 516 patients (8.1%) and injuries of stage 2 or greater (outcome variable 2) developed in 257 (4.0%). Random forest models were developed to predict stage 1 and greater and stage 2 and greater injuries by using the testing set to evaluate classifier performance. The area under the receiver operating characteristic curve for both models was 0.79.

CONCLUSION

This machine-learning approach differs from other available models because it does not require clinicians to input information into a tool (eg, the Braden Scale). Rather, it uses information readily available in electronic health records. Next steps include testing in an independent sample and then calibration to optimize specificity.

摘要

背景

医院获得性压力性损伤是重症监护患者的一个严重问题。一些可以通过使用特殊床等措施来预防,但是由于成本原因,并非每个患者都可行。然而,决定哪些患者最受益于特殊床是困难的,因为现有的压力性损伤风险评估工具的结果表明,大多数重症监护患者风险很高。

目的

为外科重症监护患者开发一种预测压力性损伤发展的模型。

方法

电子健康记录中的数据分为训练(67%)和测试(33%)数据集,并通过 R 包“randomforest”中的随机森林算法开发模型。

结果

在 6376 名患者的样本中,有 516 名(8.1%)患者发生了 1 期或更高级别的医院获得性压力性损伤(结局变量 1),有 257 名(4.0%)患者发生了 2 期或更高级别的损伤(结局变量 2)。开发了随机森林模型,通过测试集评估分类器性能,预测 1 期及以上和 2 期及以上的损伤。两个模型的受试者工作特征曲线下面积均为 0.79。

结论

这种机器学习方法与其他可用模型不同,因为它不需要临床医生在工具中输入信息(例如,Braden 量表)。相反,它使用电子健康记录中现成的信息。下一步包括在独立样本中进行测试,然后进行校准以优化特异性。

相似文献

1
Predicting Pressure Injury in Critical Care Patients: A Machine-Learning Model.
Am J Crit Care. 2018 Nov;27(6):461-468. doi: 10.4037/ajcc2018525.
3
Automated Pressure Injury Risk Assessment System Incorporated Into an Electronic Health Record System.
Nurs Res. 2017 Nov/Dec;66(6):462-472. doi: 10.1097/NNR.0000000000000245.
4
Predictive Modeling of Pressure Injury Risk in Patients Admitted to an Intensive Care Unit.
Am J Crit Care. 2020 Jul 1;29(4):e70-e80. doi: 10.4037/ajcc2020237.
6
Predicting pressure injury using nursing assessment phenotypes and machine learning methods.
J Am Med Inform Assoc. 2021 Mar 18;28(4):759-765. doi: 10.1093/jamia/ocaa336.
8
All at-risk patients are not created equal: analysis of Braden pressure ulcer risk scores to identify specific risks.
J Wound Ostomy Continence Nurs. 2012 May-Jun;39(3):282-91. doi: 10.1097/WON.0b013e3182435715.
9
Midrange Braden Subscale Scores Are Associated With Increased Risk for Pressure Injury Development Among Critical Care Patients.
J Wound Ostomy Continence Nurs. 2017 Sep/Oct;44(5):420-428. doi: 10.1097/WON.0000000000000349.
10

引用本文的文献

2
Machine Learning in Nursing: A Cross-Disciplinary Review.
Cureus. 2025 Jul 2;17(7):e87181. doi: 10.7759/cureus.87181. eCollection 2025 Jul.
5
Exploration and Validation of Key Genes and Immune Infiltration in Alcoholic Hepatitis.
J Inflamm Res. 2025 Jun 24;18:8243-8262. doi: 10.2147/JIR.S514515. eCollection 2025.
6
Immunogenic cell death biomarkers for sepsis diagnosis and mechanism via integrated bioinformatics.
Sci Rep. 2025 May 27;15(1):18575. doi: 10.1038/s41598-025-03282-3.
7
Multi-omics driven biomarker discovery and pathological insights into Pseudomonas aeruginosa pneumonia.
BMC Infect Dis. 2025 May 24;25(1):745. doi: 10.1186/s12879-025-11119-7.

本文引用的文献

1
Risk factors for pressure injuries among critical care patients: A systematic review.
Int J Nurs Stud. 2017 Jun;71:97-114. doi: 10.1016/j.ijnurstu.2017.03.012. Epub 2017 Mar 28.
2
Multiple Imputation: A Flexible Tool for Handling Missing Data.
JAMA. 2015 Nov 10;314(18):1966-7. doi: 10.1001/jama.2015.15281.
3
Exploring factors associated with pressure ulcers: a data mining approach.
Int J Nurs Stud. 2015 Jan;52(1):102-11. doi: 10.1016/j.ijnurstu.2014.08.002. Epub 2014 Aug 18.
4
Predictive validity of the Braden scale for patients in intensive care units.
Am J Crit Care. 2013 Nov;22(6):514-20. doi: 10.4037/ajcc2013991.
5
Random Forest for automatic assessment of heart failure severity in a telemonitoring scenario.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3230-3. doi: 10.1109/EMBC.2013.6610229.
6
Random forest methodology for model-based recursive partitioning: the mobForest package for R.
BMC Bioinformatics. 2013 Apr 11;14:125. doi: 10.1186/1471-2105-14-125.
7
Predictive power of the Braden scale for pressure sore risk in adult critical care patients: a comprehensive review.
J Wound Ostomy Continence Nurs. 2012 Nov-Dec;39(6):613-21; quiz 622-3. doi: 10.1097/WON.0b013e31826a4d83.
8
Reliability of pressure ulcer staging: a review of literature and 1 institution's strategy.
Crit Care Nurs Q. 2012 Jan-Mar;35(1):85-101. doi: 10.1097/CNQ.0b013e31823b1f22.
9
Pressure ulcer prevention in high-risk postoperative cardiovascular patients.
Crit Care Nurse. 2011 Aug;31(4):44-53. doi: 10.4037/ccn2011830.
10
Factors associated with pressure ulcers in patients in a surgical intensive care unit.
J Wound Ostomy Continence Nurs. 2010 Nov-Dec;37(6):619-26. doi: 10.1097/WON.0b013e3181f90a34.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验