Suppr超能文献

预测 ICU 患者压疮风险的模型。

Predictive Modeling of Pressure Injury Risk in Patients Admitted to an Intensive Care Unit.

机构信息

About the Authors: Mireia Ladios-Martin is head of quality, Ribera Salud, Valencia, Spain.

José Fernández-de-Maya is a patient safety officer, University Hospital of Vinalopó, Alicante, Spain, and University Hospital of Torrevieja, Alicante, Spain.

出版信息

Am J Crit Care. 2020 Jul 1;29(4):e70-e80. doi: 10.4037/ajcc2020237.

Abstract

BACKGROUND

Pressure injuries are an important problem in hospital care. Detecting the population at risk for pressure injuries is the first step in any preventive strategy. Available tools such as the Norton and Braden scales do not take into account all of the relevant risk factors. Data mining and machine learning techniques have the potential to overcome this limitation.

OBJECTIVES

To build a model to detect pressure injury risk in intensive care unit patients and to put the model into production in a real environment.

METHODS

The sample comprised adult patients admitted to an intensive care unit (N = 6694) at University Hospital of Torrevieja and University Hospital of Vinalopó. A retrospective design was used to train (n = 2508) and test (n = 1769) the model and then a prospective design was used to test the model in a real environment (n = 2417). Data mining was used to extract variables from electronic medical records and a predictive model was built with machine learning techniques. The sensitivity, specificity, area under the curve, and accuracy of the model were evaluated.

RESULTS

The final model used logistic regression and incorporated 23 variables. The model had sensitivity of 0.90, specificity of 0.74, and area under the curve of 0.89 during the initial test, and thus it outperformed the Norton scale. The model performed well 1 year later in a real environment.

CONCLUSIONS

The model effectively predicts risk of pressure injury. This allows nurses to focus on patients at high risk for pressure injury without increasing workload.

摘要

背景

压疮是医院护理中的一个重要问题。检测有压疮风险的人群是任何预防策略的第一步。现有的工具,如诺顿和布雷登量表,并没有考虑到所有相关的风险因素。数据挖掘和机器学习技术有潜力克服这一限制。

目的

建立一个模型来检测重症监护病房患者的压疮风险,并将模型投入实际环境中。

方法

样本包括在托雷维耶哈大学医院和比纳洛波大学医院重症监护病房(N = 6694)住院的成年患者。采用回顾性设计来训练(n = 2508)和测试(n = 1769)模型,然后采用前瞻性设计在实际环境中测试模型(n = 2417)。数据挖掘用于从电子病历中提取变量,并使用机器学习技术构建预测模型。评估了模型的灵敏度、特异性、曲线下面积和准确性。

结果

最终模型使用逻辑回归,并纳入了 23 个变量。该模型在初始测试中的灵敏度为 0.90,特异性为 0.74,曲线下面积为 0.89,因此优于诺顿量表。该模型在 1 年后的实际环境中表现良好。

结论

该模型能够有效地预测压疮风险。这使护士能够专注于有压疮风险的高危患者,而不会增加工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验