Suppr超能文献

单晶 ZnO 纳米线传感器的晶界缺陷依赖型气敏机制。

Crystal-Defect-Dependent Gas-Sensing Mechanism of the Single ZnO Nanowire Sensors.

机构信息

State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China.

University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China.

出版信息

ACS Sens. 2018 Nov 26;3(11):2385-2393. doi: 10.1021/acssensors.8b00792. Epub 2018 Nov 9.

Abstract

Though the chemical origin of a metal oxide gas sensor is widely accepted to be the surface reaction of detectants with ionsorbed oxygen, how the sensing material transduces the chemical reaction into an electrical signal (i.e., resistance change) is still not well-recognized. Herein, the single ZnO NW is used as a model to investigate the relationship between the microstructure and sensing performance. It is found that the acetone responses arrive at the maximum at the NW diameter ( D) of ∼110 nm at the D range of 80 to 400 nm, which is temperature independent in the temperature region of 200 °C-375 °C. The electrical properties of the single NW field effect transistors illustrate that the electron mobility decreases but electron concentration increases with the D ranging from ∼60 nm to ∼150 nm, inferring the good crystal quality of thinner ZnO NWs and the abundant crystal defects in thicker NWs. Subsequently, the surface charge layer ( L) is calculated to be a constant of 43.6 ± 3.7 nm at this D range, which cannot be explained by the conventional D- L model in which the gas-sensing maximum appears when D approximates 2 L. Furthermore, the crystal defects in the single ZnO NW are probed by employing the microphotoluminescence technique. The mechanism is proposed to be the compromise of the two kinds of crystal defects in ZnO (i.e., more donors and fewer acceptors favor the gas-sensing performance), which is again verified by the gas sensors based on the NW contacts.

摘要

虽然金属氧化物气体传感器的化学起源被广泛认为是检测剂与离子吸附氧的表面反应,但传感材料如何将化学反应转化为电信号(即电阻变化)仍未得到很好的认识。在此,我们使用单个 ZnO 纳米线作为模型来研究微结构与传感性能之间的关系。结果发现,在 200°C-375°C 的温度范围内,丙酮响应在 80nm 至 400nm 的 NW 直径(D)范围内达到最大值,且与温度无关。单个 NW 场效应晶体管的电特性表明,电子迁移率随 D 从约 60nm 到约 150nm 降低,而电子浓度增加,这表明较薄的 ZnO NW 具有良好的晶体质量,而较厚的 NW 中存在丰富的晶体缺陷。随后,在该 D 范围内,计算得到表面电荷层(L)为 43.6±3.7nm 的常数,这不能用传统的 D-L 模型来解释,因为在 D 接近 2L 时,气体传感达到最大值。此外,通过采用微光电致发光技术探测到了单个 ZnO NW 中的晶体缺陷。提出的机制是 ZnO 中两种晶体缺陷的折衷(即更多的施主和较少的受主有利于气体传感性能),这再次通过基于 NW 接触的气体传感器得到了验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验