Suppr超能文献

联合多变量分析和机器学习揭示了拟南芥代谢应激反应的预测模块。

Combined multivariate analysis and machine learning reveals a predictive module of metabolic stress response in Arabidopsis thaliana.

机构信息

Ludwig-Maximilians-Universität München, Department Biology I, Plant Evolutionary Cell Biology, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany.

出版信息

Mol Omics. 2018 Dec 3;14(6):437-449. doi: 10.1039/c8mo00095f.

Abstract

Abiotic stress exposure of plants induces metabolic reprogramming which is tightly regulated by signalling cascades connecting transcriptional with translational and metabolic regulation. Complexity of such interconnected metabolic networks impedes the functional understanding of molecular plant stress response compromising the design of breeding strategies and biotechnological processes. Thus, defining a molecular network to enable the prediction of a plant's stress mode will improve the understanding of stress responsive biochemical regulation and will yield novel molecular targets for technological application. Arabidopsis wild type plants and two mutant lines with deficiency in sucrose or starch metabolism were grown under ambient and combined cold/high light stress conditions. Stress-induced dynamics of the primary metabolome and the proteome were quantified by mass spectrometry. Wild type data were used to train a machine learning algorithm to classify mutant lines under control and stress conditions. Multivariate analysis and classification identified a module consisting of 23 proteins enabling the reliable prediction of combined temperature/high light stress conditions. 18 of these 23 proteins displayed putative protein-protein interactions connecting transcriptional regulation with regulation of primary and secondary metabolism. The identified stress-responsive core module supports prediction of complex biochemical regulation under changing environmental conditions.

摘要

植物的非生物胁迫暴露会诱导代谢重编程,这一过程受到连接转录与翻译以及代谢调节的信号级联的严格调控。这种相互关联的代谢网络的复杂性阻碍了对分子植物应激反应功能的理解,从而影响了选育策略和生物技术过程的设计。因此,定义一个分子网络来预测植物的应激模式将有助于深入了解应激响应的生化调节,并为技术应用提供新的分子靶标。在常温和冷/高光联合胁迫条件下,生长拟南芥野生型植物和蔗糖或淀粉代谢缺陷的两种突变体。通过质谱法定量测定初级代谢组和蛋白质组的应激诱导动态。利用野生型数据训练机器学习算法,以在对照和应激条件下对突变体进行分类。多元分析和分类鉴定出一个由 23 种蛋白质组成的模块,能够可靠地预测温度/高光联合胁迫条件。这 23 种蛋白质中有 18 种显示出假定的蛋白质-蛋白质相互作用,将转录调控与初级和次级代谢调节联系起来。鉴定出的应激响应核心模块支持对变化环境条件下复杂生化调节的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee2/6289107/cee28eda4e8c/c8mo00095f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验