Suppr超能文献

SUMO 缀合复合物独立于 SIZ1 和 COP1 自组装形成核体。

The SUMO Conjugation Complex Self-Assembles into Nuclear Bodies Independent of SIZ1 and COP1.

机构信息

Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, the Netherlands.

Keygene N.V., 6708 PW Wageningen, the Netherlands.

出版信息

Plant Physiol. 2019 Jan;179(1):168-183. doi: 10.1104/pp.18.00910. Epub 2018 Nov 2.

Abstract

Attachment of the small ubiquitin-like modifier (SUMO) to substrate proteins modulates their turnover, activity, or interaction partners. However, how this SUMO conjugation activity concentrates the proteins involved and the substrates into uncharacterized nuclear bodies (NBs) remains poorly understood. Here, we characterized the requirements for SUMO NB formation and for their subsequent colocalization with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a master regulator of plant growth. COP1 activity results in degradation of transcription factors, which primes the transcriptional response that underlies elongation growth induced by darkness and high ambient temperatures (skoto- and thermomorphogenesis, respectively). SUMO conjugation activity alone was sufficient to target the SUMO machinery into NBs. Colocalization of these bodies with COP1 required, in addition to SUMO conjugation activity, a SUMO acceptor site in COP1 and the SUMO E3 ligase SAP and Miz 1 (SIZ1). We found that SIZ1 docks in the substrate-binding pocket of COP1 via two valine-proline peptide motifs, which represent a known interaction motif of COP1 substrates. The data reveal that SIZ1 physically connects COP1 and SUMO conjugation activity in the same NBs that can also contain the blue-light receptors CRYPTOCHROME 1 and CRYPTOCHROME 2. Our findings thus suggest that sumoylation stimulates COP1 activity within NBs. Moreover, the presence of SIZ1 and SUMO in these NBs explains how both the timing and amplitude of the high-temperature growth response is controlled. The strong colocalization of COP1 and SUMO in these NBs might also explain why many COP1 substrates are sumoylated.

摘要

小泛素样修饰物 (SUMO) 与底物蛋白的结合可调节其周转率、活性或相互作用伙伴。然而,这种 SUMO 缀合活性如何将涉及的蛋白质和底物浓缩到未鉴定的核体 (NB) 中仍知之甚少。在这里,我们描述了 SUMO NB 形成的要求及其随后与 E3 泛素连接酶 CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) 的共定位,COP1 是植物生长的主要调节剂。COP1 活性导致转录因子降解,这为黑暗和高环境温度下诱导的转录因子降解奠定了基础(分别为 skoto-和 thermomorphogenesis)。SUMO 缀合活性本身足以将 SUMO 机器靶向到 NB 中。这些体与 COP1 的共定位除了 SUMO 缀合活性外,还需要 COP1 中的 SUMO 受体位点和 SUMO E3 连接酶 SAP 和 Miz 1 (SIZ1)。我们发现 SIZ1 通过两个缬氨酸-脯氨酸肽基序与 COP1 的底物结合口袋对接,这代表 COP1 底物的已知相互作用基序。数据表明,SIZ1 通过 COP1 的底物结合口袋中的两个 Val-Pro 肽基序物理连接 COP1 和 SUMO 缀合活性,这是 COP1 底物的已知相互作用基序。这些发现表明,SUMO 化在 NB 内刺激 COP1 活性。此外,SIZ1 和 SUMO 在这些 NB 中的存在解释了高温生长反应的时间和幅度如何得到控制。COP1 和 SUMO 在这些 NB 中的强共定位也可能解释为什么许多 COP1 底物被 SUMO 化。

相似文献

1
The SUMO Conjugation Complex Self-Assembles into Nuclear Bodies Independent of SIZ1 and COP1.
Plant Physiol. 2019 Jan;179(1):168-183. doi: 10.1104/pp.18.00910. Epub 2018 Nov 2.
2
An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity.
PLoS Genet. 2016 Apr 29;12(4):e1006016. doi: 10.1371/journal.pgen.1006016. eCollection 2016 Apr.
3
SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid.
Plant Physiol. 2006 Dec;142(4):1548-58. doi: 10.1104/pp.106.088831. Epub 2006 Oct 13.
4
The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth.
PLoS Genet. 2018 Jan 22;14(1):e1007157. doi: 10.1371/journal.pgen.1007157. eCollection 2018 Jan.
5
6
Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling.
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5418-23. doi: 10.1073/pnas.0811088106. Epub 2009 Mar 10.
7
SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in Arabidopsis thaliana.
Plant Cell Physiol. 2015 Dec;56(12):2297-311. doi: 10.1093/pcp/pcv149. Epub 2015 Oct 14.
8
Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium.
BMC Plant Biol. 2015 Sep 17;15:225. doi: 10.1186/s12870-015-0613-3.
9
SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress.
Plant Cell. 2018 May;30(5):1077-1099. doi: 10.1105/tpc.17.00993. Epub 2018 Mar 27.
10
Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice.
Plant Cell Environ. 2010 Nov;33(11):1923-34. doi: 10.1111/j.1365-3040.2010.02195.x.

引用本文的文献

1
Co-opted SUMO machinery promotes condensate formation associated with membranous replication organelles of a positive-strand RNA virus.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2423465122. doi: 10.1073/pnas.2423465122. Epub 2025 Jun 13.
4
5
Plant SUMO E3 Ligases: Function, Structural Organization, and Connection With DNA.
Front Plant Sci. 2021 Apr 9;12:652170. doi: 10.3389/fpls.2021.652170. eCollection 2021.
6
SIZ1-Mediated SUMO Modification of SEUSS Regulates Photomorphogenesis in .
Plant Commun. 2020 Jun 2;1(5):100080. doi: 10.1016/j.xplc.2020.100080. eCollection 2020 Sep 14.
7
The SUMO E3 Ligase SIZ1 Negatively Regulates Shoot Regeneration.
Plant Physiol. 2020 Sep;184(1):330-344. doi: 10.1104/pp.20.00626. Epub 2020 Jul 1.
8
Developmental Plasticity at High Temperature.
Plant Physiol. 2019 Oct;181(2):399-411. doi: 10.1104/pp.19.00652. Epub 2019 Jul 30.
9
Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis.
J Integr Plant Biol. 2020 May;62(5):614-630. doi: 10.1111/jipb.12813. Epub 2019 May 24.

本文引用的文献

1
SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress.
Plant Cell. 2018 May;30(5):1077-1099. doi: 10.1105/tpc.17.00993. Epub 2018 Mar 27.
3
The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth.
PLoS Genet. 2018 Jan 22;14(1):e1007157. doi: 10.1371/journal.pgen.1007157. eCollection 2018 Jan.
4
Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via BZR1.
Curr Biol. 2018 Jan 22;28(2):303-310.e3. doi: 10.1016/j.cub.2017.11.077. Epub 2018 Jan 11.
5
Arabidopsis TCP Transcription Factors Interact with the SUMO Conjugating Machinery in Nuclear Foci.
Front Plant Sci. 2017 Nov 30;8:2043. doi: 10.3389/fpls.2017.02043. eCollection 2017.
6
The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.
PLoS Genet. 2017 Oct 9;13(10):e1007044. doi: 10.1371/journal.pgen.1007044. eCollection 2017 Oct.
7
Expanding Roles of PIFs in Signal Integration from Multiple Processes.
Mol Plant. 2017 Aug 7;10(8):1035-1046. doi: 10.1016/j.molp.2017.07.002. Epub 2017 Jul 13.
8
Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy.
J Biol Chem. 2017 Jun 16;292(24):10230-10238. doi: 10.1074/jbc.M117.789982. Epub 2017 Apr 28.
9
The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling.
Curr Opin Plant Biol. 2017 Jun;37:63-69. doi: 10.1016/j.pbi.2017.03.015. Epub 2017 Apr 21.
10
COP1 conveys warm temperature information to hypocotyl thermomorphogenesis.
New Phytol. 2017 Jul;215(1):269-280. doi: 10.1111/nph.14581. Epub 2017 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验