Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, the Netherlands.
Keygene N.V., 6708 PW Wageningen, the Netherlands.
Plant Physiol. 2019 Jan;179(1):168-183. doi: 10.1104/pp.18.00910. Epub 2018 Nov 2.
Attachment of the small ubiquitin-like modifier (SUMO) to substrate proteins modulates their turnover, activity, or interaction partners. However, how this SUMO conjugation activity concentrates the proteins involved and the substrates into uncharacterized nuclear bodies (NBs) remains poorly understood. Here, we characterized the requirements for SUMO NB formation and for their subsequent colocalization with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a master regulator of plant growth. COP1 activity results in degradation of transcription factors, which primes the transcriptional response that underlies elongation growth induced by darkness and high ambient temperatures (skoto- and thermomorphogenesis, respectively). SUMO conjugation activity alone was sufficient to target the SUMO machinery into NBs. Colocalization of these bodies with COP1 required, in addition to SUMO conjugation activity, a SUMO acceptor site in COP1 and the SUMO E3 ligase SAP and Miz 1 (SIZ1). We found that SIZ1 docks in the substrate-binding pocket of COP1 via two valine-proline peptide motifs, which represent a known interaction motif of COP1 substrates. The data reveal that SIZ1 physically connects COP1 and SUMO conjugation activity in the same NBs that can also contain the blue-light receptors CRYPTOCHROME 1 and CRYPTOCHROME 2. Our findings thus suggest that sumoylation stimulates COP1 activity within NBs. Moreover, the presence of SIZ1 and SUMO in these NBs explains how both the timing and amplitude of the high-temperature growth response is controlled. The strong colocalization of COP1 and SUMO in these NBs might also explain why many COP1 substrates are sumoylated.
小泛素样修饰物 (SUMO) 与底物蛋白的结合可调节其周转率、活性或相互作用伙伴。然而,这种 SUMO 缀合活性如何将涉及的蛋白质和底物浓缩到未鉴定的核体 (NB) 中仍知之甚少。在这里,我们描述了 SUMO NB 形成的要求及其随后与 E3 泛素连接酶 CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) 的共定位,COP1 是植物生长的主要调节剂。COP1 活性导致转录因子降解,这为黑暗和高环境温度下诱导的转录因子降解奠定了基础(分别为 skoto-和 thermomorphogenesis)。SUMO 缀合活性本身足以将 SUMO 机器靶向到 NB 中。这些体与 COP1 的共定位除了 SUMO 缀合活性外,还需要 COP1 中的 SUMO 受体位点和 SUMO E3 连接酶 SAP 和 Miz 1 (SIZ1)。我们发现 SIZ1 通过两个缬氨酸-脯氨酸肽基序与 COP1 的底物结合口袋对接,这代表 COP1 底物的已知相互作用基序。数据表明,SIZ1 通过 COP1 的底物结合口袋中的两个 Val-Pro 肽基序物理连接 COP1 和 SUMO 缀合活性,这是 COP1 底物的已知相互作用基序。这些发现表明,SUMO 化在 NB 内刺激 COP1 活性。此外,SIZ1 和 SUMO 在这些 NB 中的存在解释了高温生长反应的时间和幅度如何得到控制。COP1 和 SUMO 在这些 NB 中的强共定位也可能解释为什么许多 COP1 底物被 SUMO 化。