Suppr超能文献

基于数据驱动的青少年特发性脊柱侧凸三维脊柱曲线分类及其在手术结果预测中的应用。

Data-driven Classification of the 3D Spinal Curve in Adolescent Idiopathic Scoliosis with an Applications in Surgical Outcome Prediction.

机构信息

Division of Orthopedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19141, USA.

Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19141, USA.

出版信息

Sci Rep. 2018 Nov 2;8(1):16296. doi: 10.1038/s41598-018-34261-6.

Abstract

Adolescent idiopathic scoliosis (AIS) is a three-dimensional (3D) deformity of the spinal column. For progressive deformities in AIS, the spinal fusion surgery aims to correct and stabilize the deformity; however, common surgical planning approaches based on the 2D X-rays and subjective surgical decision-making have been challenged by poor clinical outcomes. As the suboptimal surgical outcomes can significantly impact the cost, risk of revision surgery, and long-term rehabilitation of adolescent patients, objective patient-specific models that predict the outcome of different treatment scenarios are in high demand. 3D classification of the spinal curvature and identifying the key surgical parameters influencing the outcomes are required for such models. Here, we show that K-means clustering of the isotropically scaled 3D spinal curves provides an effective, data-driven method for classification of patients. We further propose, and evaluate in 67 right thoracic AIS patients, that by knowing the patients' pre-operative and early post-operation clusters and the vertebral levels which were instrumented during the surgery, the two-year outcome cluster can be determined. This framework, once applied to a larger heterogeneous patient dataset, can further isolate the key surgeon-modifiable parameters and eventually lead to a patient-specific predictive model based on a limited number of factors determinable prior to surgery.

摘要

青少年特发性脊柱侧凸(AIS)是脊柱的三维(3D)畸形。对于 AIS 的进行性畸形,脊柱融合手术旨在矫正和稳定畸形; 然而,基于 2D X 射线和主观手术决策的常见手术规划方法受到了较差的临床结果的挑战。由于手术结果不理想会显著影响青少年患者的成本、再次手术的风险和长期康复,因此需要客观的针对特定患者的模型来预测不同治疗方案的结果。这些模型需要对脊柱曲率进行 3D 分类,并确定影响结果的关键手术参数。在这里,我们展示了各向同性缩放的 3D 脊柱曲线的 K-均值聚类为患者分类提供了一种有效、数据驱动的方法。我们进一步提出,并在 67 例右侧胸段 AIS 患者中进行了评估,通过了解患者术前和术后早期的聚类以及手术中器械的椎体水平,可以确定两年后的结果聚类。该框架一旦应用于更大的异质患者数据集,就可以进一步分离出关键的可由外科医生修改的参数,并最终基于术前确定的少数几个因素建立基于特定患者的预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ca/6214965/f98fa23c23cd/41598_2018_34261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验