Suppr超能文献

利用改良 Dixon Quant 对 257 例以定量 CT 为参考的受试者腰椎 MR 进行异常骨密度和骨质疏松预测。

Prediction of Abnormal Bone Density and Osteoporosis From Lumbar Spine MR Using Modified Dixon Quant in 257 Subjects With Quantitative Computed Tomography as Reference.

机构信息

Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China.

Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA.

出版信息

J Magn Reson Imaging. 2019 Feb;49(2):390-399. doi: 10.1002/jmri.26233. Epub 2018 Nov 3.

Abstract

BACKGROUND

Bone marrow fat increases when bone mass decreases, which could be attributed to the fact that adipogenesis competes with osteogenesis. Bone marrow fat has the potential to predict abnormal bone density and osteoporosis.

PURPOSE

To investigate the predictive value of using vertebral bone marrow fat fraction(BMFF) obtained from modified Dixon(mDixon) Quant in the determination of abnormal bone density and osteoporosis.

STUDY TYPE

Prospective.

POPULATION

257 subjects (age: 20-79 years old; BMI: 16.6-32.9 kg/m ;181 females,76 males) without known spinal tumor, history of trauma, dysplasia, spinal surgery or hormone therapy.

FIELD STRENGTH/SEQUENCE: 3.0T/mDixon.

ASSESSMENT

BMFF was measured at the L1, L2 and L3 vertebral body on fat fraction maps of the lumbar spine. Bone mineral density (BMD) was obtained using quantitative computed tomography, which served as the reference standard.

STATISTICAL TESTS

The BMFF between the three groups (normal bone density, osteopenia and osteoporosis) was tested using one-way analysis of variance in SPSS. The correlation and partial correlation of BMFF and BMD were analyzed before and after controlling for age, sex and BMI. Logistic regression analysis using independent training and validation data was conducted to evaluate the performance of predicting abnormal BMD or osteoporosis using BMFF.

RESULTS

There was a significant difference in vertebral BMFF between the three groups (P < 0.001). Moderate inverse correlation was found between vertebral BMFF and BMD after controlling age, sex and BMI (r = -0.529; P < 0.001). The mean area under the curve, sensitivity, specificity and negative predictive value (NPV) for predicting abnormal bone density were 0.940, 0.877, 0.896, and 0.890, respectively. The corresponding results for predicting subjects with osteoporosis were 0.896, 0.848, 0.853, and 0.969, respectively. DATA CONCLUSION: mDixon Quant is a fast, simple, noninvasive and nonionizing method to access vertebral BMFF and has a high predictive power for identifying abnormal bone density and osteoporosis.

LEVEL OF EVIDENCE

1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:390-399.

摘要

背景

当骨量减少时,骨髓脂肪会增加,这可能是因为脂肪生成与成骨作用竞争的结果。骨髓脂肪有可能预测异常骨密度和骨质疏松症。

目的

探讨使用改良 Dixon(mDixon) Quant 获得的椎体骨髓脂肪分数(BMFF)来预测异常骨密度和骨质疏松症的价值。

研究类型

前瞻性。

人群

257 名受试者(年龄:20-79 岁;BMI:16.6-32.9kg/m;181 名女性,76 名男性),无已知脊柱肿瘤、外伤史、发育不良、脊柱手术或激素治疗史。

磁场强度/序列:3.0T/mDixon。

评估

在腰椎脂肪分数图上测量 L1、L2 和 L3 椎体的 BMFF。使用定量计算机断层扫描获得骨矿物质密度(BMD),作为参考标准。

统计学检验

使用 SPSS 对正常骨密度、骨量减少和骨质疏松症三组之间的 BMFF 进行单因素方差分析。在控制年龄、性别和 BMI 后,分析 BMFF 与 BMD 的相关性和偏相关性。使用独立的训练和验证数据进行逻辑回归分析,以评估使用 BMFF 预测异常 BMD 或骨质疏松症的性能。

结果

三组间椎体 BMFF 差异有统计学意义(P<0.001)。控制年龄、性别和 BMI 后,椎体 BMFF 与 BMD 呈中度负相关(r=-0.529;P<0.001)。预测异常骨密度的曲线下面积、敏感性、特异性和阴性预测值(NPV)平均值分别为 0.940、0.877、0.896 和 0.890。预测骨质疏松症患者的相应结果分别为 0.896、0.848、0.853 和 0.969。

数据结论

mDixon Quant 是一种快速、简单、无创和非电离的方法,可以获取椎体 BMFF,对识别异常骨密度和骨质疏松症具有较高的预测能力。

证据水平

1 技术功效:第 2 阶段 J. Magn. Reson. Imaging 2019;49:390-399.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验