Suppr超能文献

基于人工智能机器学习的冠状动脉 CT 血流储备分数(CT-FFR):迭代和滤波反投影重建技术的影响。

Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFR): Impact of iterative and filtered back projection reconstruction techniques.

机构信息

Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology, Division of Cardiovascular Imaging, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, USA; Department of Neuroscience and Imaging, Section of Diagnostic Imaging and Therapy - Radiology Division, SS. Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.

Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany.

出版信息

J Cardiovasc Comput Tomogr. 2019 Nov-Dec;13(6):331-335. doi: 10.1016/j.jcct.2018.10.026. Epub 2018 Oct 26.

Abstract

BACKGROUND

The influence of computed tomography (CT) reconstruction algorithms on the performance of machine-learning-based CT-derived fractional flow reserve (CT-FFR) has not been investigated. CT-FFR values and processing time of two reconstruction algorithms were compared using an on-site workstation.

METHODS

CT-FFR was computed on 40 coronary CT angiography (CCTA) datasets that were reconstructed with both iterative reconstruction in image space (IRIS) and filtered back-projection (FBP) algorithms. CT-FFR was computed on a per-vessel and per-segment basis as well as distal to lesions with ≥50% stenosis on CCTA. Processing times were recorded. Significant flow-limiting stenosis was defined as invasive FFR and CT-FFR values ≤ 0.80. Pearson's correlation, Wilcoxon, and McNemar statistical testing were used for data analysis.

RESULTS

Per-vessel analysis of IRIS and FBP reconstructions demonstrated significantly different CT-FFR values (p ≤ 0.05). Correlation of CT-FFR values between algorithms was high for the left main (r = 0.74), left anterior descending (r = 0.76), and right coronary (r = 0.70) arteries. Proximal and middle segments showed a high correlation of CT-FFR values (r = 0.73 and r = 0.67, p ≤ 0.001, respectively), despite having significantly different averages (p ≤ 0.05). No difference in diagnostic accuracy was observed (both 81.8%, p = 1.000). Of the 40 patients, 10 had invasive FFR results. Per-lesion correlation with invasive FFR values was moderate for IRIS (r = 0.53, p = 0.117) and FBP (r = 0.49, p = 0.142). Processing time was significantly shorter using IRIS (15.9 vs. 19.8 min, p ≤ 0.05).

CONCLUSION

CT reconstruction algorithms influence CT-FFR analysis, potentially affecting patient management. Additionally, iterative reconstruction improves CT-FFR post-processing speed.

摘要

背景

计算机断层扫描(CT)重建算法对基于机器学习的 CT 衍生的分流量储备(CT-FFR)的性能的影响尚未得到研究。使用现场工作站比较了两种重建算法的 CT-FFR 值和处理时间。

方法

对 40 个冠状动脉 CT 血管造影(CCTA)数据集进行 CT-FFR 计算,这些数据集分别使用迭代重建图像空间(IRIS)和滤波反投影(FBP)算法进行重建。基于血管和节段,以及 CCTA 上狭窄程度≥50%的病变远端计算 CT-FFR。记录处理时间。有意义的血流限制狭窄定义为有创 FFR 和 CT-FFR 值≤0.80。采用 Pearson 相关、Wilcoxon 和 McNemar 统计检验进行数据分析。

结果

IRIS 和 FBP 重建的血管分析显示 CT-FFR 值明显不同(p≤0.05)。两种算法之间的 CT-FFR 值相关性很高,对于左主干(r=0.74)、左前降支(r=0.76)和右冠状动脉(r=0.70)。近端和中段的 CT-FFR 值相关性很高(r=0.73 和 r=0.67,p≤0.001),尽管平均值差异显著(p≤0.05)。诊断准确性没有差异(均为 81.8%,p=1.000)。40 名患者中有 10 名进行了有创 FFR 检查。与有创 FFR 值的病变相关性对于 IRIS 为中度(r=0.53,p=0.117),对于 FBP 为中度(r=0.49,p=0.142)。IRIS 的处理时间明显缩短(15.9 分钟对 19.8 分钟,p≤0.05)。

结论

CT 重建算法会影响 CT-FFR 分析,可能会影响患者的管理。此外,迭代重建提高了 CT-FFR 的后处理速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验