Suppr超能文献

迭代重建算法对基于机器学习的冠状动脉 CT 血管造影衍生的分数血流量储备(CT-FFR)值的影响。

The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFR) values.

机构信息

Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Int J Cardiovasc Imaging. 2020 Jun;36(6):1177-1185. doi: 10.1007/s10554-020-01807-7. Epub 2020 Mar 4.

Abstract

To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) measurements compared with filtered back projection (FBP). 170 plaque-containing vessels in 107 patients were included. CT-FFR values were measured and compared among 5 imaging reconstruction algorithms (FBP and ADMIRE at strength levels of 1, 2, 3 and 5). The plaques were classified as, 'calcified" or "noncalcified" and "≥ 50% stenosis" or "< 50% stenosis', a total of four subgroups by consensus. There were no significant differences of CT-FFR values among the FBP and ADMIRE 1, 2, 3 and 5 groups wherever comparisons were done at the level of subgroups (P = 0.676, 0.414, 0.849, 0.873, respectively) or overall (P = 0.072). There were 20, 21, 19, 19 and 29 vessels with lesion-specific ischemia (CT-FFR ≤ 0.80) in FBP and ADMIRE 1, 2, 3 and 5 datasets, respectively, but no statistical differences were found (P = 0.437). Compared with CT-FFR value of FBP dataset, the CT-FFR values of 9 (5.3%) vessels from 8 patients (7.5%) in ADMIRE5 dataset switched from above 0.8 to below or equal to 0.8. There were no significant differences of the CT-FFR values among the FBP and IR image algorithms at different strength levels. However, high iterative strength level (ADMIRE 5) was not recommended, which might have an impact on diagnosis of lesion-specific ischemia, although changes only occurred in a modest number of subjects.

摘要

评估迭代重建(IR)算法(高级模型迭代重建,ADMIRE)对基于机器学习的冠状动脉计算机断层血管造影衍生的血流储备分数(CT-FFR)测量的影响,与滤波反投影(FBP)相比。纳入 107 例患者的 170 个斑块血管。测量并比较了 5 种成像重建算法(FBP 和 ADMIRE 的强度水平为 1、2、3 和 5)的 CT-FFR 值。斑块根据共识分为“钙化”或“非钙化”和“≥50%狭窄”或“<50%狭窄”,共分为四个亚组。在进行亚组水平(P=0.676、0.414、0.849、0.873,分别)或总体比较时,FBP 和 ADMIRE 1、2、3 和 5 组的 CT-FFR 值无显著差异(P=0.072)。FBP 和 ADMIRE 1、2、3 和 5 数据集分别有 20、21、19、19 和 29 个血管存在病变特异性缺血(CT-FFR≤0.80),但无统计学差异(P=0.437)。与 FBP 数据集的 CT-FFR 值相比,8 例患者(7.5%)的 ADMIRE5 数据集的 9 个(5.3%)血管的 CT-FFR 值从高于 0.8 切换到等于或低于 0.8。不同强度水平的 FBP 和 IR 图像算法的 CT-FFR 值无显著差异。然而,不建议使用高强度迭代水平(ADMIRE 5),因为尽管仅在少数患者中发生变化,但这可能会影响病变特异性缺血的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验