Tjøstheim Trond A, Balkenius Christian
Lund University Cognitive Science, Lund University, Box 117, 221 00, Lund, Sweden.
Cogn Process. 2019 Feb;20(1):87-102. doi: 10.1007/s10339-018-0888-z. Epub 2018 Nov 3.
We show how a multi-resolution network can model the development of acuity and coarse-to-fine processing in the mammalian visual cortex. The network adapts to input statistics in an unsupervised manner, and learns a coarse-to-fine representation by using cumulative inhibition of nodes within a network layer. We show that a system of such layers can represent input by hierarchically composing larger parts from smaller components. It can also model aspects of top-down processes, such as image regeneration.
我们展示了一个多分辨率网络如何模拟哺乳动物视觉皮层中敏锐度的发展以及从粗到细的处理过程。该网络以无监督的方式适应输入统计信息,并通过对网络层内节点的累积抑制来学习从粗到细的表示。我们表明,这样的层系统可以通过从较小组件分层组合更大的部分来表示输入。它还可以模拟自上而下的过程,如图像再生。