Finnegan John R, He Xiaoming, Street Steven T G, Garcia-Hernandez J Diego, Hayward Dominic W, Harniman Robert L, Richardson Robert M, Whittell George R, Manners Ian
School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom.
Department of Chemistry , University of Victoria , Victoria , BC V8W 3V6 , Canada.
J Am Chem Soc. 2018 Dec 12;140(49):17127-17140. doi: 10.1021/jacs.8b09861. Epub 2018 Dec 3.
Fiber-like block copolymer (BCP) micelles offer considerable potential for a variety of applications; however, uniform samples of controlled length and with spatially tailored chemistry have not been accessible. Recently, a seeded growth method, termed "living" crystallization-driven self-assembly (CDSA), has been developed to allow the formation of 1D micelles and block comicelles of precisely controlled dimensions from BCPs with a crystallizable segment. An expansion of the range of core-forming blocks that participate in living CDSA is necessary for this technique to be compatible with a broad range of applications. Few examples currently exist of well-defined, water-dispersible BCP micelles prepared using this approach, especially from biocompatible and biodegradable polymers. Herein, we demonstrate that BCPs containing a crystallizable polycarbonate, poly(spiro[fluorene-9,5'-[1,3]-dioxan]-2'-one) (PFTMC), can readily undergo living CDSA processes. PFTMC- b-poly(ethylene glycol) (PEG) BCPs with PFTMC:PEG block ratios of 1:11 and 1:25 were shown to undergo living CDSA to form near monodisperse fiber-like micelles of precisely controlled lengths of up to ∼1.6 μm. Detailed structural characterization of these micelles by TEM, AFM, SAXS, and WAXS revealed that they comprise a crystalline, chain-folded PFTMC core with a rectangular cross-section that is surrounded by a solvent swollen PEG corona. PFTMC- b-PEG fiber-like micelles were shown to be dispersible in water to give colloidally stable solutions. This allowed an assessment of the toxicity of these structures toward WI-38 and HeLa cells. From these experiments, we observed no discernible cytotoxicity from a sample of 119 nm fiber-like micelles to either healthy (WI-38) or cancerous (HeLa) cell types. The living CDSA process was extended to PFTMC- b-poly(2-vinylpyridine) (P2VP), and addition of this BCP to PFTMC- b-PEG seed micelles led to the formation of well-defined segmented fibers with spatially localized coronal chemistries.
纤维状嵌段共聚物(BCP)胶束在多种应用中具有巨大潜力;然而,长度可控且具有空间定制化学性质的均匀样品尚未可得。最近,一种被称为“活性”结晶驱动自组装(CDSA)的种子生长方法已被开发出来,用于从具有可结晶链段的BCP中形成尺寸精确可控的一维胶束和嵌段共胶束。为使该技术与广泛的应用兼容,扩大参与活性CDSA的核形成嵌段的范围是必要的。目前,使用这种方法制备的定义明确、水分散性的BCP胶束的例子很少,特别是由生物相容性和可生物降解聚合物制成的胶束。在此,我们证明含有可结晶聚碳酸酯聚(螺[芴-9,5'-[1,3]-二氧六环]-2'-酮)(PFTMC)的BCP能够轻松进行活性CDSA过程。PFTMC与聚乙二醇(PEG)的嵌段比为1:11和1:25的PFTMC-b-PEG BCP被证明能进行活性CDSA,形成长度精确可控、接近单分散的纤维状胶束,长度可达约1.6μm。通过透射电子显微镜(TEM)、原子力显微镜(AFM)、小角X射线散射(SAXS)和广角X射线散射(WAXS)对这些胶束进行详细的结构表征,结果表明它们由具有矩形横截面的结晶、链折叠PFTMC核组成,周围是溶剂溶胀的PEG冠层。PFTMC-b-PEG纤维状胶束被证明可分散在水中,形成胶体稳定溶液。这使得能够评估这些结构对WI-38和HeLa细胞的毒性。从这些实验中,我们观察到119nm纤维状胶束样品对健康(WI-38)或癌细胞(HeLa)类型均无明显细胞毒性。活性CDSA过程扩展到了PFTMC-b-聚(2-乙烯基吡啶)(P2VP),将这种BCP添加到PFTMC-b-PEG种子胶束中导致形成具有空间定位冠层化学性质的定义明确的分段纤维。