Klein Tobias, Gruschwitz Franka V, Kuchenbrod Maren T, Nischang Ivo, Hoeppener Stephanie, Brendel Johannes C
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
Beilstein J Org Chem. 2021 Oct 21;17:2621-2628. doi: 10.3762/bjoc.17.175. eCollection 2021.
Controlling the length of one-dimensional (1D) polymer nanostructures remains a key challenge on the way toward the applications of these structures. Here, we demonstrate that top-down processing facilitates a straightforward adjustment of the length of polyethylene oxide (PEO)-based supramolecular polymer bottlebrushes (SPBs) in aqueous solutions. These cylindrical structures self-assemble via directional hydrogen bonds formed by benzenetrisurea (BTU) or benzenetrispeptide (BTP) motifs located within the hydrophobic core of the fiber. A slow transition from different organic solvents to water leads first to the formation of µm-long fibers, which can subsequently be fragmented by ultrasonication or dual asymmetric centrifugation. The latter allows for a better adjustment of applied shear stresses, and thus enables access to differently sized fragments depending on time and rotation rate. Extended sonication and scission analysis further allowed an estimation of tensile strengths of around 16 MPa for both the BTU and BTP systems. In combination with the high kinetic stability of these SPBs, the applied top-down methods represent an easily implementable technique toward 1D polymer nanostructures with an adjustable length in the range of interest for perspective biomedical applications.
在一维(1D)聚合物纳米结构的应用之路上,控制其长度仍然是一个关键挑战。在此,我们证明自上而下的加工方式有助于在水溶液中直接调节基于聚环氧乙烷(PEO)的超分子聚合物瓶刷(SPB)的长度。这些圆柱形结构通过位于纤维疏水核心内的苯三脲(BTU)或苯三肽(BTP)基序形成的定向氢键自组装。从不同有机溶剂到水的缓慢转变首先导致形成微米长的纤维,随后可通过超声处理或双不对称离心将其破碎。后者能够更好地调节施加的剪切应力,从而根据时间和转速获得不同尺寸的片段。进一步的超声处理和断裂分析使我们能够估计出BTU和BTP系统的拉伸强度均约为16 MPa。结合这些SPB的高动力学稳定性,所应用的自上而下方法代表了一种易于实施的技术,可用于制备长度可调的一维聚合物纳米结构,其长度范围对于潜在的生物医学应用具有重要意义。