Suppr超能文献

基于电流-电压特性的单分子结研究

Investigation on Single-Molecule Junctions Based on Current⁻Voltage Characteristics.

作者信息

Isshiki Yuji, Matsuzawa Yuya, Fujii Shintaro, Kiguchi Manabu

机构信息

Department of Chemistry, Graduate School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.

出版信息

Micromachines (Basel). 2018 Feb 2;9(2):67. doi: 10.3390/mi9020067.

Abstract

The relationship between the current through an electronic device and the voltage across its terminals is a current⁻voltage characteristic (⁻) that determine basic device performance. Currently, ⁻ measurement on a single-molecule scale can be performed using break junction technique, where a single molecule junction can be prepared by trapping a single molecule into a nanogap between metal electrodes. The single-molecule ⁻s provide not only the device performance, but also reflect information on energy dispersion of the electronic state and the electron-molecular vibration coupling in the junction. This mini review focuses on recent representative studies on ⁻s of the single molecule junctions that cover investigation on the single-molecule diode property, the molecular vibration, and the electronic structure as a form of transmission probability, and electronic density of states, including the spin state of the single-molecule junctions. In addition, thermoelectronic measurements based on ⁻s and identification of the charged carriers (i.e., electrons or holes) are presented. The analysis in the single-molecule ⁻s provides fundamental and essential information for a better understanding of the single-molecule science, and puts the single molecule junction to more practical use in molecular devices.

摘要

通过电子器件的电流与其两端电压之间的关系是一种电流-电压特性(I-V特性),它决定了器件的基本性能。目前,可以使用断结技术在单分子尺度上进行I-V测量,其中通过将单个分子捕获到金属电极之间的纳米间隙中来制备单分子结。单分子I-V特性不仅提供了器件性能,还反映了有关结中电子态的能量色散以及电子-分子振动耦合的信息。本综述聚焦于单分子结I-V特性的近期代表性研究,这些研究涵盖了对单分子二极管特性、分子振动以及作为传输概率形式的电子结构和态密度的研究,包括单分子结的自旋态。此外,还介绍了基于I-V特性的热电子测量以及带电载流子(即电子或空穴)的识别。单分子I-V特性分析为更好地理解单分子科学提供了基础且重要的信息,并使单分子结在分子器件中得到更实际的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfc5/6187306/652478d6a049/micromachines-09-00067-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验