Häse Florian, Roch Loïc M, Aspuru-Guzik Alán
Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , USA . Email:
Department of Chemistry and Department of Computer Science , University of Toronto , Toronto , Ontario M5S3H6 , Canada.
Chem Sci. 2018 Aug 28;9(39):7642-7655. doi: 10.1039/c8sc02239a. eCollection 2018 Oct 21.
Finding the ideal conditions satisfying multiple pre-defined targets simultaneously is a challenging decision-making process, which impacts science, engineering, and economics. Additional complexity arises for tasks involving experimentation or expensive computations, as the number of evaluated conditions must be kept low. We propose Chimera as a general purpose achievement scalarizing function for multi-target optimization where evaluations are the limiting factor. Chimera combines concepts of scalarizing with lexicographic approaches and is applicable to any set of unknown objectives. Importantly, it does not require detailed prior knowledge about individual objectives. The performance of Chimera is demonstrated on several well-established analytic multi-objective benchmark sets using different single-objective optimization algorithms. We further illustrate the applicability and performance of Chimera with two practical examples: (i) the auto-calibration of a virtual robotic sampling sequence for direct-injection, and (ii) the inverse-design of a four-pigment excitonic system for an efficient energy transport. The results indicate that Chimera enables a wide class of optimization algorithms to rapidly find ideal conditions. Additionally, the presented applications highlight the interpretability of Chimera to corroborate design choices for tailoring system parameters.
同时找到满足多个预定义目标的理想条件是一个具有挑战性的决策过程,这会影响科学、工程和经济领域。对于涉及实验或昂贵计算的任务,会出现额外的复杂性,因为必须将评估条件的数量保持在较低水平。我们提出Chimera作为一种通用的成就标量化函数,用于多目标优化,其中评估是限制因素。Chimera将标量化概念与字典序方法相结合,适用于任何一组未知目标。重要的是,它不需要关于单个目标的详细先验知识。使用不同的单目标优化算法,在几个成熟的分析多目标基准集上展示了Chimera的性能。我们通过两个实际例子进一步说明Chimera的适用性和性能:(i)用于直接注射的虚拟机器人采样序列的自动校准,以及(ii)用于高效能量传输的四色素激子系统的逆向设计。结果表明,Chimera使广泛的优化算法能够快速找到理想条件。此外,所展示的应用突出了Chimera的可解释性,以证实为定制系统参数而做出的设计选择。