Institute of Machining Technology (ISF), TU Dortmund University, Germany.
Evol Comput. 2009 Winter;17(4):527-44. doi: 10.1162/evco.2009.17.4.17405.
In the field of production engineering, various complex multi-objective problems are known. In this paper we focus on the design of mold temperature control systems, the reconstruction of digitized surfaces, and the optimization of NC paths for the five-axis milling process. For all these applications, efficient problem-specific algorithms exist that only consider a subset of the desirable objectives. In contrast, modern multi-objective evolutionary algorithms are able to cope with many conflicting objectives, but they require a long runtime due to their general applicability. Therefore, we propose hybrid algorithms for the three applications mentioned. In each case, the problem-specific algorithms are used to determine promising initial solutions for the multi-objective evolutionary approach, whose variation concepts are used to generate diversity in the objective space. We show that the combination of these techniques provides great benefits. Since the final solution is chosen by a decision maker based on this Pareto front approximation, appropriate visualizations of the high-dimensional solutions are presented.
在生产工程领域,存在着各种复杂的多目标问题。在本文中,我们重点研究模具温度控制系统的设计、数字化曲面的重构以及五轴铣削过程的数控路径优化。对于所有这些应用,都存在着专门针对特定问题的高效算法,这些算法仅考虑了理想目标的一个子集。相比之下,现代多目标进化算法能够应对许多相互冲突的目标,但由于其通用性,它们需要较长的运行时间。因此,我们针对上述三个应用提出了混合算法。在每种情况下,专门针对问题的算法都用于为多目标进化方法确定有希望的初始解决方案,而多目标进化方法的变化概念则用于在目标空间中产生多样性。我们表明,这些技术的组合提供了巨大的好处。由于最终的解决方案是由决策者根据这个 Pareto 前端近似值来选择的,因此还提出了针对高维解决方案的适当可视化方法。