Liu Yang, Teng Wei, Chen Gang, Zhao Zaiwang, Zhang Wei, Kong Biao, Hozzein Wael N, Al-Khalaf Areej Abdulkareem, Deng Yonghui, Zhao Dongyuan
Department of Chemistry , Laboratory of Advanced Materials , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChEM , Fudan University , Shanghai 200433 , P. R. China . Email:
State Key Laboratory for Pollution Control , School of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China.
Chem Sci. 2018 Aug 17;9(39):7705-7714. doi: 10.1039/c8sc02967a. eCollection 2018 Oct 21.
Alumina materials have widely been used in industrial fields, such as catalysis and adsorption. However, due to the fast sol-gel process and complicated crystalline-phase transformation, the synthesis of alumina materials with both highly ordered mesostructures and crystallized frameworks remains a great challenge. Herein, we report a novel vesicle-aggregation-assembly strategy to prepare highly ordered mesoporous γ-alumina microspheres with unique shifted double-diamond networks for the first time, by using diblock copolymer poly(ethylene oxide)--poly(methyl methacrylate) (PEO--PMMA) as a template and aluminum isopropoxide as a precursor in a tetrahydrofuran (THF)/hydrochloric acid binary solvent. During the gradual evaporation of THF and HO, the as-made Al-based gel/PEO--PMMA composites can be obtained through a co-assembly process based on the hydrogen bonding interaction between hydroxyl groups of alumina oligomers and PEO segments of the diblock copolymers. The formed composites exhibit a spherical morphology with a wide size distribution (diameter size 1-12 μm). Furthermore, these composite microspheres possess an inverse bicontinuous cubic mesostructure (double diamond, 3[combining macron]) with Al-based gel buried in the PEO--PMMA matrix in the form of two intertwined but disconnected networks. After a simple calcination at 900 °C in air, the structure of the resultant mesoporous alumina changes to a relatively low symmetry (shifted double diamond, 3[combining macron]), ascribed to the shifting of the two alumina networks due to loss of the templates. Meanwhile, the unit cell size of the alumina mesostructure decreases from ∼131 to ∼95 nm. The obtained ordered mesoporous alumina products retain the spherical morphology and possess ultra-large mesopores (∼72.8 nm), columnar frameworks composed of γ-alumina nanocrystalline particles (crystal size of ∼15 nm) and high thermal stability (up to 900 °C). As a support of Au nanoparticles, the formed Au/mesoporous γ-alumina composite catalysts have been used in the catalytic reduction of 4-nitrophenol with a high kinetic constant of 0.0888 min, implying promising potential as a catalyst support.
氧化铝材料已广泛应用于催化和吸附等工业领域。然而,由于溶胶 - 凝胶过程迅速且晶相转变复杂,合成同时具有高度有序介观结构和结晶骨架的氧化铝材料仍然是一个巨大挑战。在此,我们首次报道了一种新颖的囊泡聚集组装策略,通过使用二嵌段共聚物聚(环氧乙烷) - 聚(甲基丙烯酸甲酯)(PEO - PMMA)作为模板,异丙醇铝作为前驱体,在四氢呋喃(THF)/盐酸二元溶剂中制备具有独特移位双菱形网络的高度有序介孔γ - 氧化铝微球。在THF和水逐渐蒸发过程中,通过基于氧化铝低聚物羟基与二嵌段共聚物PEO链段之间氢键相互作用的共组装过程,可以得到所制备的Al基凝胶/PEO - PMMA复合材料。所形成的复合材料呈现出球形形态,尺寸分布较宽(直径尺寸为1 - 12μm)。此外,这些复合微球具有反相双连续立方介观结构(双菱形,3[ Macron ]),Al基凝胶以两个相互交织但不相连的网络形式埋入PEO - PMMA基质中。在空气中900℃简单煅烧后,所得介孔氧化铝的结构变为相对低对称性(移位双菱形,3[ Macron ]),这归因于模板损失导致的两个氧化铝网络的移位。同时,氧化铝介观结构的晶胞尺寸从约131nm减小到约95nm。所获得的有序介孔氧化铝产物保留了球形形态,具有超大介孔(约72.8nm)、由γ - 氧化铝纳米晶体颗粒组成的柱状骨架(晶体尺寸约为15nm)以及高热稳定性(高达900℃)。作为金纳米颗粒的载体,所形成的Au/介孔γ - 氧化铝复合催化剂已用于催化还原4 - 硝基苯酚,动力学常数高达0.0888min,这意味着作为催化剂载体具有广阔的应用前景。