Suppr超能文献

用于太阳能热光伏能量收集的高温耐火超表面

High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.

作者信息

Chang Chun-Chieh, Kort-Kamp Wilton J M, Nogan John, Luk Ting S, Azad Abul K, Taylor Antoinette J, Dalvit Diego A R, Sykora Milan, Chen Hou-Tong

机构信息

Center for Integrated Nanotechnologies , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.

Center for Nonlinear Studies , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.

出版信息

Nano Lett. 2018 Dec 12;18(12):7665-7673. doi: 10.1021/acs.nanolett.8b03322. Epub 2018 Nov 13.

Abstract

Solar energy promises a viable solution to meet the ever-increasing power demand by providing a clean, renewable energy alternative to fossil fuels. For solar thermophotovoltaics (STPV), high-temperature absorbers and emitters with strong spectral selectivity are imperative to efficiently couple solar radiation into photovoltaic cells. Here, we demonstrate refractory metasurfaces for STPV with tailored absorptance and emittance characterized by in situ high-temperature measurements, featuring thermal stability up to at least 1200 °C. Our tungsten-based metasurface absorbers have close-to-unity absorption from visible to near-infrared and strongly suppressed emission at longer wavelengths, while our metasurface emitters provide wavelength-selective emission spectrally matched to the band-edge of InGaAsSb photovoltaic cells. The projected overall STPV efficiency is as high as 18% when a fully integrated absorber/emitter metasurface structure is employed, which is comparable to the efficiencies of the best currently available commercial single-junction PV cells and can be further improved to potentially exceed those in mainstream photovoltaic technologies. Our work opens a path forward for high-performance STPV systems based on refractory metasurface structures.

摘要

太阳能有望提供一个可行的解决方案,通过提供一种清洁、可再生的能源替代化石燃料,来满足不断增长的电力需求。对于太阳能热光伏(STPV)而言,具有强光谱选择性的高温吸收体和发射体对于有效地将太阳辐射耦合到光伏电池中至关重要。在此,我们展示了用于STPV的难熔超表面,其具有定制的吸收率和发射率,并通过原位高温测量进行表征,具有至少高达1200°C的热稳定性。我们基于钨的超表面吸收体在可见光到近红外范围内具有接近单位的吸收率,并且在更长波长处的发射受到强烈抑制,而我们的超表面发射体提供与InGaAsSb光伏电池的带边光谱匹配的波长选择性发射。当采用完全集成的吸收体/发射体超表面结构时,预计的整体STPV效率高达18%,这与目前最好的商用单结光伏电池的效率相当,并且可以进一步提高以潜在地超过主流光伏技术中的效率。我们的工作为基于难熔超表面结构的高性能STPV系统开辟了一条道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验