Parveen Abida, Tyagi Deepika, Laxmi Vijay, Ullah Naeem, Ahmad Faisal, Irshad Ahsan, Tao Keyu, Ouyang Zhengbiao
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
THz Technology Laboratory, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen University, Shenzhen 518060, China.
Materials (Basel). 2025 Jul 11;18(14):3273. doi: 10.3390/ma18143273.
Electromagnetic wave (EMW) absorption materials are crucial for a wide range of applications, yet most existing materials suffer from complex fabrication and narrow absorption bands, particularly under harsh environmental conditions. In this study, we introduce a broadband metamaterial absorber based on TiCO MXene, a novel two-dimensional material that uniquely combines high electrical and metallic conductivity with hydrophilicity, biocompatibility, and an extensive surface area. Through advanced finite-difference time-domain (FDTD) simulations, the proposed absorber achieves over 95% absorption from 0.3 µm to 18 µm. Additionally, other MXene variants, including TiCF and TiC(OH), demonstrate robust absorption above 85%. This absorber not only outperforms previously reported structures in terms of efficiency and spectral coverage but also opens avenues for integration into applications such as infrared sensing, energy harvesting, wearable electronics, and Internet of Things (IoT) systems.
电磁波(EMW)吸收材料对于广泛的应用至关重要,但大多数现有材料存在制造工艺复杂和吸收带宽窄的问题,尤其是在恶劣环境条件下。在本研究中,我们介绍了一种基于TiCO MXene的宽带超材料吸收体,TiCO MXene是一种新型二维材料,独特地将高导电性和金属导电性与亲水性、生物相容性以及大表面积结合在一起。通过先进的时域有限差分(FDTD)模拟,所提出的吸收体在0.3 µm至18 µm范围内实现了超过95%的吸收率。此外,其他MXene变体,包括TiCF和TiC(OH),在85%以上表现出强大的吸收能力。这种吸收体不仅在效率和光谱覆盖方面优于先前报道的结构,还为集成到红外传感、能量收集、可穿戴电子和物联网(IoT)系统等应用开辟了道路。