Suppr超能文献

由 NiCoSe 纳米片扎根于碳多面体组装的多孔中空复合材料,具有卓越的储锂能力。

Porous hollow composites assembled by NiCoSe nanosheets rooted on carbon polyhedra for superior lithium storage capability.

机构信息

Department of Materials, Fudan University, Shanghai 200433, China.

Department of Materials, Fudan University, Shanghai 200433, China; Guangdong Provincial Key Laboratory of Advance Energy Storage Materials, South China University of Technology, Guangzhou 510640, China.

出版信息

J Colloid Interface Sci. 2019 Feb 15;536:673-680. doi: 10.1016/j.jcis.2018.10.110. Epub 2018 Nov 2.

Abstract

Transition metal chalcogenides (TMCs) have attracted considerable interest owing to their satisfied theoretical capacity, good safety and environmentally benign nature in lithium-ion batteries (LIBs). However, the poor conductivity as well as the severe volume changes during the discharge-charge process cause capacity fading rapidly, which severely impede the practical applications of TMCs. To address this challenge, a hollow hybrid architecture assembled by NiCoSe nanosheets and strongly coupled porous carbon have been rational designed. Within this structure, the integration of nanosheets rooted on the surface of porous carbon not only provide three-dimensional conductive network but also offer plentiful pathways and active sites for electrolyte penetration and Li storage, and buffer a large volume expansion/contraction caused by lithium intercalation/deintercalation. As evidenced by electrochemical measurements, the NiCoSe/C composites used as anodes in LIBs exhibit a superior reversible high capacity of 1667 mA h g at current density of 2.0 A g over 600 cycles and an outstanding rate capability (1580 and 1093 mA h g at 3.2 and 6.4 A g, respectively).

摘要

过渡金属硫属化物(TMCs)因其在锂离子电池(LIBs)中具有满意的理论容量、良好的安全性和环境友好性而引起了相当大的关注。然而,较差的导电性以及在充放电过程中严重的体积变化导致容量迅速衰减,严重阻碍了 TMCs 的实际应用。为了解决这一挑战,设计了一种由 NiCoSe 纳米片和强耦合多孔碳组装而成的空心混合结构。在这种结构中,纳米片扎根在多孔碳表面的集成不仅提供了三维导电网络,而且为电解质渗透和 Li 存储提供了丰富的途径和活性位点,并缓冲了由锂插层/脱插层引起的大的体积膨胀/收缩。电化学测量表明,用作 LIBs 阳极的 NiCoSe/C 复合材料在 2.0 A/g 的电流密度下经过 600 次循环后具有 1667 mA h/g 的超高可逆比容量,并且具有出色的倍率性能(在 3.2 和 6.4 A/g 时分别为 1580 和 1093 mA h/g)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验