Suppr超能文献

3T 多参数 MRI 与乳腺癌分子亚型之间是否存在相关性?

Is there a correlation between 3T multiparametric MRI and molecular subtypes of breast cancer?

机构信息

Department of Pathology and Diagnostics - Radiology Unit, University Hospital of Verona, Verona, Italy.

Department of Pathology and Diagnostics - Radiology Unit, University Hospital of Verona, Verona, Italy.

出版信息

Eur J Radiol. 2018 Nov;108:120-127. doi: 10.1016/j.ejrad.2018.09.024. Epub 2018 Sep 24.

Abstract

OBJECTIVES

To test whether 3 T multiparametric magnetic resonance imaging (mMRI) provides information related to molecular subtypes of breast cancer.

METHODS

Women with mammographic or US findings of breast lesions (BI-RADS 4-5) underwent 3 T mMRI (DCE, DWI and MR spectroscopy). The histological type of breast cancer was assessed. Estrogen-receptor (ER), progesterone-receptor (PgR), Ki-67 status and HER-2 expression, assessed by immunohistochemistry (IHC), defined four molecular subtypes: Luminal-A, Luminal-B, HER2-enriched and triple-negative. Non-parametric tests (Kruskal-Wallis, k-sample equality of medians, and Mann-Whitney), logistic regression or ANOVA, and a multivariate analysis were performed to investigate correlations between the four molecular subtypes and mMRI (lesion volume, margins or distribution, enhancement pattern, ADC, type of kinetic curve, and total choline (tCho) signal-to-noise-ratio (SNR)). A ROC analysis was finally performed to test the diagnostic power of a multivariate logistic regression model.

RESULTS

433 patients (453 lesions) were considered. Volume was smaller in Luminal-B and larger in triple-negative tumours compared to the other subtypes combined. Margins were significantly correlated to Luminal-A and Luminal-B. The type of curve was significantly correlated to Luminal-A. ADC values were higher in Luminal-A. tCho SNR was higher in triple-negative tumours. The ROC analysis showed that the area under the curve (AUC) significantly improved when multiple MRI features were used compared to individual parameters.

CONCLUSIONS

A significant correlation was found between some MRI features and molecular subtypes of breast tumours. A multiparametric approach improved the diagnostic power of MRI. However, further research is needed in order to predict the molecular subtype on the sole basis of mMRI.

摘要

目的

探究 3T 多参数磁共振成像(mMRI)是否能提供乳腺癌分子亚型相关信息。

方法

对乳腺病变(BI-RADS 4-5)有乳腺 X 线摄影或超声表现的女性行 3T mMRI(DCE、DWI 和磁共振波谱)检查。评估乳腺癌的组织学类型。采用免疫组化(IHC)检测雌激素受体(ER)、孕激素受体(PgR)、Ki-67 状态和 HER-2 表达,将其分为四个分子亚型:Luminal-A、Luminal-B、HER2 富集型和三阴性。采用非参数检验(Kruskal-Wallis、K 样本中位数相等检验和 Mann-Whitney 检验)、逻辑回归或方差分析以及多变量分析来研究四个分子亚型与 mMRI(病变体积、边界或分布、增强模式、ADC、动力学曲线类型和总胆碱(tCho)信号-噪声比(SNR))之间的相关性。最后进行 ROC 分析,以测试多变量逻辑回归模型的诊断效能。

结果

共纳入 433 例患者(453 个病灶)。与其他亚型组合相比,Luminal-B 型肿瘤体积较小,三阴性肿瘤体积较大。边界与 Luminal-A 和 Luminal-B 显著相关。曲线类型与 Luminal-A 显著相关。Luminal-A 型 ADC 值较高。三阴性肿瘤 tCho SNR 较高。ROC 分析显示,与单独使用参数相比,当使用多个 MRI 特征时,曲线下面积(AUC)显著提高。

结论

一些 MRI 特征与乳腺癌肿瘤的分子亚型之间存在显著相关性。多参数方法提高了 MRI 的诊断效能。然而,还需要进一步研究以便仅基于 mMRI 预测分子亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验