Suppr超能文献

增强微泡造影剂在 250kHz 超声作用下的振荡。

Enhanced microbubble contrast agent oscillation following 250 kHz insonation.

机构信息

Department of Radiology, Stanford University, Palo Alto, California, USA.

Department of Biomedical Engineering, University of California, Davis, California, USA.

出版信息

Sci Rep. 2018 Nov 5;8(1):16347. doi: 10.1038/s41598-018-34494-5.

Abstract

Microbubble contrast agents are widely used in ultrasound imaging and therapy, typically with transmission center frequencies in the MHz range. Currently, an ultrasound center frequency near 250 kHz is proposed for clinical trials in which ultrasound combined with microbubble contrast agents is applied to open the blood brain barrier, since at this low frequency focusing through the human skull to a predetermined location can be performed with reduced distortion and attenuation compared to higher frequencies. However, the microbubble vibrational response has not yet been carefully evaluated at this low frequency (an order of magnitude below the resonance frequency of these contrast agents). In the past, it was assumed that encapsulated microbubble expansion is maximized near the resonance frequency and monotonically decreases with decreasing frequency. Our results indicated that microbubble expansion was enhanced for 250 kHz transmission as compared with the 1 MHz center frequency. Following 250 kHz insonation, microbubble expansion increased nonlinearly with increasing ultrasonic pressure, and was accurately predicted by either the modified Rayleigh-Plesset equation for a clean bubble or the Marmottant model of a lipid-shelled microbubble. The expansion ratio reached 30-fold with 250 kHz at a peak negative pressure of 400 kPa, as compared to a measured expansion ratio of 1.6 fold for 1 MHz transmission at a similar peak negative pressure. Further, the range of peak negative pressure yielding stable cavitation in vitro was narrow (~100 kPa) for the 250 kHz transmission frequency. Blood brain barrier opening using in vivo transcranial ultrasound in mice followed the same trend as the in vitro experiments, and the pressure range for safe and effective treatment was 75-150 kPa. For pressures above 150 kPa, inertial cavitation and hemorrhage occurred. Therefore, we conclude that (1) at this low frequency, and for the large oscillations, lipid-shelled microbubbles can be approximately modeled as clean gas microbubbles and (2) the development of safe and successful protocols for therapeutic delivery to the brain utilizing 250 kHz or a similar center frequency requires consideration of the narrow pressure window between stable and inertial cavitation.

摘要

微泡造影剂广泛应用于超声成像和治疗,其传输的中心频率通常在 MHz 范围内。目前,有人提出在临床试验中使用近 250 kHz 的超声中心频率,将超声与微泡造影剂联合应用于开放血脑屏障,因为在这个低频下,与高频相比,通过人颅骨聚焦到预定位置的失真和衰减较小。然而,在这个低频下(远低于这些造影剂的共振频率),微泡的振动响应尚未得到仔细评估。过去,人们认为微泡的膨胀在接近共振频率时达到最大值,并随着频率的降低而单调下降。我们的结果表明,与 1 MHz 的中心频率相比,250 kHz 的传输使微泡膨胀增强。在 250 kHz 的超声照射后,微泡的膨胀随着超声压力的增加呈非线性增加,并且可以通过清洁气泡的修正瑞利-普莱塞特方程或脂质壳微泡的 Marmottant 模型准确预测。与 1 MHz 传输时在类似的峰值负压下测量到的 1.6 倍的膨胀比相比,在 250 kHz 时达到了 30 倍的膨胀比,峰值负压为 400 kPa。此外,在 250 kHz 的传输频率下,体外产生稳定空化的峰值负压范围较窄(约 100 kPa)。在活体小鼠经颅超声实验中,血脑屏障的开放也呈现出相同的趋势,安全有效的治疗压力范围为 75-150 kPa。对于超过 150 kPa 的压力,会发生惯性空化和出血。因此,我们得出结论:(1)在这个低频下,对于大的振动,脂质壳微泡可以近似地建模为清洁气体微泡;(2)为了利用 250 kHz 或类似的中心频率将治疗药物安全有效地递送到大脑,需要考虑稳定和惯性空化之间的狭窄压力窗口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2f3/6218550/a87b59538e07/41598_2018_34494_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验