Suppr超能文献

Ag/Mesoporous 黑 TiO 纳米管异质结的表面等离子体共振增强可见近红外驱动光催化和光热催化性能。

Surface Plasmon Resonance-Enhanced Visible-NIR-Driven Photocatalytic and Photothermal Catalytic Performance by Ag/Mesoporous Black TiO Nanotube Heterojunctions.

机构信息

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, P. R. China.

出版信息

Chem Asian J. 2019 Jan 4;14(1):177-186. doi: 10.1002/asia.201801428. Epub 2018 Nov 26.

Abstract

Ag/mesoporous black TiO nanotubes heterojunctions (Ag-MBTHs) were fabricated through a surface hydrogenation, wet-impregnation and photoreduction strategy. The as-prepared Ag-MBTHs possess a relatively high specific surface area of ≈85 m  g and an average pore size of ≈13.2 nm. The Ag-MBTHs with a narrow band gap of ≈2.63 eV extend the photoresponse from UV to the visible-light and near-infrared (NIR) region. They exhibit excellent visible-NIR-driven photothermal catalytic and photocatalytic performance for complete conversion of nitro aromatic compounds (100 %) and mineralization of highly toxic phenol (100 %). The enhancement can be attributed to the mesoporous hollow structures increasing the light multi-refraction, the Ti in frameworks and the surface plasmon resonance (SPR) effect of plasmonic Ag nanoparticles favoring light-harvesting and spatial separation of photogenerated electron-hole pairs, which is confirmed by transient fluorescence. The fabrication of this SPR-enhanced visible-NIR-driven Ag-MBTHs catalyst may provide new insights for designing other high-performance heterojunctions as photocatalytic and photothermal catalytic nanomaterials.

摘要

Ag/介孔黑 TiO 纳米管异质结(Ag-MBTHs)通过表面氢化、湿浸渍和光还原策略制备而成。所制备的 Ag-MBTHs 具有相对较高的比表面积(约 85 m  g)和平均孔径(约 13.2 nm)。具有约 2.63 eV 窄带隙的 Ag-MBTHs 将光响应从紫外扩展到可见光和近红外(NIR)区域。它们表现出优异的可见光-NIR 驱动的光热催化和光催化性能,可完全转化硝基芳香族化合物(100%)并矿化高毒性苯酚(100%)。增强归因于介孔空心结构增加了光多次折射,框架中的 Ti 和等离子体 Ag 纳米粒子的表面等离子体共振(SPR)效应有利于光捕获和光生电子空穴的空间分离,这通过瞬态荧光得到证实。这种 SPR 增强的可见光-NIR 驱动的 Ag-MBTHs 催化剂的制备可为设计其他高性能异质结作为光催化和光热催化纳米材料提供新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验