Spinnrock Andreas, Schupp David, Cölfen Helmut
Physical Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, 78457, Konstanz, Germany.
Small. 2018 Dec;14(50):e1803518. doi: 10.1002/smll.201803518. Epub 2018 Nov 6.
Nanoparticle gradient materials are a unique class of functional materials. They combine the specific properties of nanoparticles with macroscopic materials. A continuous spatial gradient of the nanoparticle concentration leads to diverse physical property profiles. Therefore, these materials have a remarkable potential for applications in optics, electronics, and sensors. A novel approach for the defined and controlled synthesis of this material class is the fabrication in ultracentrifugal fields. The formation of a nanoparticle gradient by sedimentation in a gelatin solution is monitored online with optical systems inside an analytical ultracentrifuge. As soon as the desired nanoparticle concentration gradient is generated, the material is solidified by gelation and the desired gradient is fixed in the material. Application of the established theory of analytical ultracentrifugation allows simulations of the sedimentation process of the nanoparticles in advance. Thus, desired nanoparticle gradient materials can also be tailor-made and fabricated on a preparative scale. This is demonstrated for the example of spherical gold nanoparticles of different sizes, gold nanorods, mixtures thereof, and spherical superparamagnetic iron oxide nanoparticles.
纳米颗粒梯度材料是一类独特的功能材料。它们将纳米颗粒的特定性质与宏观材料相结合。纳米颗粒浓度的连续空间梯度导致了多样的物理性质分布。因此,这些材料在光学、电子学和传感器领域具有显著的应用潜力。一种用于定义和控制合成这类材料的新方法是在超速离心场中制备。在分析超速离心机内部,利用光学系统在线监测明胶溶液中纳米颗粒通过沉降形成梯度的过程。一旦产生所需的纳米颗粒浓度梯度,材料通过凝胶化固化,所需的梯度就固定在材料中。应用已确立的分析超速离心理论可以预先模拟纳米颗粒的沉降过程。因此,所需的纳米颗粒梯度材料也可以定制并在制备规模上制造。以不同尺寸的球形金纳米颗粒、金纳米棒、它们的混合物以及球形超顺磁性氧化铁纳米颗粒为例进行了说明。