Spinnrock Andreas, Martens Max, Enders Florian, Boldt Klaus, Cölfen Helmut
Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.
Department of Applied Science (Materials Science & Engineering), Fontys University of Applied Science, 5612 MA Eindhoven, The Netherlands.
Nanomaterials (Basel). 2019 Jul 9;9(7):988. doi: 10.3390/nano9070988.
Nanoparticle gradient materials combine a concentration gradient of nanoparticles with a macroscopic matrix. This way, specific properties of nanoscale matter can be transferred to bulk materials. These materials have great potential for applications in optics, electronics, and sensors. However, it is challenging to monitor the formation of such gradient materials and prepare them in a controlled manner. In this study, we present a novel universal approach for the preparation of this material class using diffusion in an analytical ultracentrifuge. The nanoparticles diffuse into a molten thermoreversible polymer gel and the process is observed in real-time by measuring the particle concentrations along the length of the material to establish a systematic understanding of the gradient generation process. We extract the apparent diffusion coefficients using Fick's second law of diffusion and simulate the diffusion behavior of the particles. When the desired concentration gradient is achieved the polymer solution is cooled down to fix the concentration gradient in the formed gel phase and obtain a nanoparticle gradient material with the desired property gradient. Gradients of semiconductor nanoparticles with different sizes, fluorescent silica particles, and spherical superparamagnetic iron oxide nanoparticles are presented. This method can be used to produce tailored nanoparticle gradient materials with a broad range of physical properties in a simple and predictable way.
纳米颗粒梯度材料将纳米颗粒的浓度梯度与宏观基质结合在一起。通过这种方式,纳米级物质的特定特性可以转移到块状材料中。这些材料在光学、电子学和传感器领域具有巨大的应用潜力。然而,监测此类梯度材料的形成并以可控方式制备它们具有挑战性。在本研究中,我们提出了一种新颖的通用方法,利用分析超速离心机中的扩散来制备此类材料。纳米颗粒扩散到熔融的热可逆聚合物凝胶中,并通过测量材料长度上的颗粒浓度实时观察该过程,以系统地了解梯度生成过程。我们使用菲克第二扩散定律提取表观扩散系数,并模拟颗粒的扩散行为。当达到所需的浓度梯度时,将聚合物溶液冷却以固定形成的凝胶相中的浓度梯度,并获得具有所需特性梯度的纳米颗粒梯度材料。展示了不同尺寸的半导体纳米颗粒、荧光二氧化硅颗粒和球形超顺磁性氧化铁纳米颗粒的梯度。该方法可用于以简单且可预测的方式生产具有广泛物理性质的定制纳米颗粒梯度材料。