Suppr超能文献

使用无监督机器学习识别圆锥角膜严重程度。

Keratoconus severity identification using unsupervised machine learning.

机构信息

Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.

Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.

出版信息

PLoS One. 2018 Nov 6;13(11):e0205998. doi: 10.1371/journal.pone.0205998. eCollection 2018.

Abstract

We developed an unsupervised machine learning algorithm and applied it to big corneal parameters to identify and monitor keratoconus stages. A big dataset of corneal swept source optical coherence tomography (OCT) images of 12,242 eyes acquired from SS-1000 CASIA OCT Imaging Systems in multiple centers across Japan was assembled. A total of 3,156 eyes with valid Ectasia Status Index (ESI) between zero and 100% were selected for the downstream analysis. Four hundred and twenty corneal topography, elevation, and pachymetry parameters (excluding ESI Keratoconus indices) were selected. The algorithm included three major steps. 1) Principal component analysis (PCA) was used to linearly reduce the dimensionality of the input data from 420 to eight significant principal components. 2) Manifold learning was used to further reducing the selected principal components nonlinearly to two eigen-parameters. 3) Finally, a density-based clustering was applied to the eigen-parameters to identify eyes with keratoconus. Visualization of clusters in 2-D space was used to validate the quality of learning subjectively and ESI was used to assess the accuracy of the identified clusters objectively. The proposed method identified four clusters; I: a cluster composed of mostly normal eyes (224 eyes with ESI equal to zero, 23 eyes with ESI between five and 29, and nine eyes with ESI greater than 29), II: a cluster composed of mostly healthy eyes and eyes with forme fruste keratoconus (1772 eyes with ESI equal to zero, 698 eyes with ESI between five and 29, and 117 eyes with ESI greater than 29), III: a cluster composed of mostly eyes with mild keratoconus stage (184 eyes with ESI greater than 29, 74 eyes with ESI between five and 29, and 6 eyes with ESI equal to zero), and IV: a cluster composed of eyes with mostly advanced keratoconus stage (80 eyes had ESI greater than 29 and 1 eye had ESI between five and 29). We found that keratoconus status and severity can be well identified using unsupervised machine learning algorithms along with linear and non-linear corneal data transformation. The proposed method can better identify and visualize the keratoconus stages.

摘要

我们开发了一种无监督机器学习算法,并将其应用于大角膜参数,以识别和监测圆锥角膜的阶段。我们收集了来自日本多个中心的 SS-1000 CASIA 光学相干断层扫描(OCT)成像系统的 12242 只眼睛的大角膜 Swept Source OCT 图像数据集。总共选择了 3156 只 Ectasia Status Index(ESI)在 0%到 100%之间的有效眼睛进行下游分析。选择了 420 个角膜地形、高度和厚度参数(不包括 ESI 圆锥角膜指数)。该算法包括三个主要步骤。1)主成分分析(PCA)用于将输入数据的维度从 420 线性降低到 8 个显著的主成分。2)流形学习用于将所选的主成分非线性地进一步降低到两个特征参数。3)最后,对特征参数进行基于密度的聚类,以识别圆锥角膜的眼睛。在二维空间中对聚类进行可视化,以主观地验证学习的质量,并使用 ESI 客观地评估识别出的聚类的准确性。该方法识别出了四个聚类;I:一个由大多数正常眼睛组成的聚类(224 只眼睛的 ESI 等于零,23 只眼睛的 ESI 在 5 到 29 之间,9 只眼睛的 ESI 大于 29),II:一个由大多数健康眼睛和轻度圆锥角膜的眼睛组成的聚类(1772 只眼睛的 ESI 等于零,698 只眼睛的 ESI 在 5 到 29 之间,117 只眼睛的 ESI 大于 29),III:一个由大多数轻度圆锥角膜阶段的眼睛组成的聚类(184 只眼睛的 ESI 大于 29,74 只眼睛的 ESI 在 5 到 29 之间,6 只眼睛的 ESI 等于零),IV:一个由大多数进展性圆锥角膜阶段的眼睛组成的聚类(80 只眼睛的 ESI 大于 29,1 只眼睛的 ESI 在 5 到 29 之间)。我们发现,使用无监督机器学习算法以及线性和非线性角膜数据变换,可以很好地识别圆锥角膜的状态和严重程度。该方法可以更好地识别和可视化圆锥角膜的阶段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcd3/6219768/ec26fdbfdc93/pone.0205998.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验