Mansoor Muhammad Bin, Köble Sören, Wong Tin Wang, Woias Peter, Goldschmidtböing Frank
Laboratory for the Design of Microsystems, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany.
Micromachines (Basel). 2017 Sep 5;8(9):271. doi: 10.3390/mi8090271.
This article presents experimental characterization and numerical simulation techniques used to create large amplitude and high frequency surface waves with the help of a metal/ceramic composite transducer array. Four piezoelectric bimorph transducers are cascaded and operated in a nonlinear regime, creating broad band resonant vibrations. The used metallic plate itself resembles a movable wall which can align perfectly with an airfoil surface. A phase-shifted operation of the actuators results in local displacements that generate a surface wave in the boundary layer for an active turbulence control application. The primary focus of this article is actuator design and a systematic parameter variation experiment which helped optimize its nonlinear dynamics. Finite Element Model (FEM) simulations were performed for different design variants, with a primary focus in particular on the minimization of bending stress seen directly on the piezo elements while achieving the highest possible deflection of the vibrating metallic plate. Large output force and a small yield stress (leading to a relatively small output stoke) are characteristics intrinsic to the stiff piezo-ceramics. Optimized piezo thickness and its spatial distribution on the bending surface resulted in an efficient stress management within the bimorph design. Thus, our proposed resonant transduction array achieved surface vibrations with a maximum peak-to-peak amplitude of 500 μ m in a frequency range around 1200 Hz.
本文介绍了借助金属/陶瓷复合换能器阵列产生大振幅和高频表面波所使用的实验表征和数值模拟技术。四个压电双晶片换能器级联并在非线性状态下运行,产生宽带共振振动。所使用的金属板本身类似于一个可移动壁,它可以与翼型表面完美对齐。致动器的相移操作会导致局部位移,从而在边界层中产生表面波,用于主动湍流控制应用。本文的主要重点是致动器设计以及有助于优化其非线性动力学的系统参数变化实验。针对不同的设计变体进行了有限元模型(FEM)模拟,特别主要关注在实现振动金属板尽可能大的挠度的同时,使压电元件上直接出现的弯曲应力最小化。高输出力和小屈服应力(导致相对较小的输出行程)是刚性压电陶瓷固有的特性。优化的压电厚度及其在弯曲表面上的空间分布导致了双晶片设计内的有效应力管理。因此,我们提出的共振换能器阵列在1200 Hz左右的频率范围内实现了最大峰峰值振幅为500μm的表面振动。