Suppr超能文献

压电弯曲致动器的动态机电耦合

Dynamic Electromechanical Coupling of Piezoelectric Bending Actuators.

作者信息

Nabawy Mostafa R A, Crowther William J

机构信息

School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK.

出版信息

Micromachines (Basel). 2016 Jan 20;7(1):12. doi: 10.3390/mi7010012.

Abstract

Electromechanical coupling defines the ratio of electrical and mechanical energy exchanged during a flexure cycle of a piezoelectric actuator. This paper presents an analysis of the dynamic electromechanical coupling factor (dynamic EMCF) for cantilever based piezoelectric actuators and provides for the first time explicit expressions for calculation of dynamic EMCF based on arrangement of passive and active layers, layer geometry, and active and passive materials selection. Three main cantilever layer configurations are considered: unimorph, dual layer bimorph and triple layer bimorph. The actuator is modeled using standard constitutive dynamic equations that relate deflection and charge to force and voltage. A mode shape formulation is used for the cantilever dynamics that allows the generalized mass to be the actual mass at the first resonant frequency, removing the need for numerical integration in the design process. Results are presented in the form of physical insight from the model structure and also numerical evaluations of the model to provide trends in dynamic EMCF with actuator design parameters. For given material properties of the active and passive layers and given system overall damping ratio, the triple layer bimorph topology is the best in terms of theoretically achievable dynamic EMCF, followed by the dual layer bimorph. For a damping ratio of 0.035, the dynamic EMCF for an example dual layer bimorph configuration is 9% better than for a unimorph configuration. For configurations with a passive layer, the ratio of thicknesses for the passive and active layers is the primary geometric design variable. Choice of passive layer stiffness (Young's modulus) relative to the stiffness of the material in the active layer is an important materials related design choice. For unimorph configurations, it is beneficial to use the highest stiffness possible passive material, whereas for triple layer bimorph configurations, the passive material should have a low stiffness. In all cases, increasing the transverse electromechanical coupling coefficient of the active material improves the dynamic EMCF.

摘要

机电耦合定义了压电致动器弯曲周期中交换的电能与机械能的比率。本文对基于悬臂梁的压电致动器的动态机电耦合因子(动态EMCF)进行了分析,并首次基于被动层和主动层的排列、层几何形状以及主动和被动材料的选择,给出了计算动态EMCF的明确表达式。考虑了三种主要的悬臂梁层配置:单压电晶片、双层双压电晶片和三层双压电晶片。使用标准本构动态方程对致动器进行建模,该方程将挠度和电荷与力和电压联系起来。采用模态形状公式来描述悬臂梁的动力学,使得广义质量在第一共振频率下为实际质量,从而在设计过程中无需进行数值积分。结果以模型结构的物理见解以及模型的数值评估的形式呈现,以提供动态EMCF随致动器设计参数的变化趋势。对于给定的主动层和被动层材料特性以及给定的系统总阻尼比,三层双压电晶片拓扑在理论上可实现的动态EMCF方面是最佳的,其次是双层双压电晶片。对于阻尼比为0.035的情况,示例双层双压电晶片配置的动态EMCF比单压电晶片配置好9%。对于具有被动层的配置,被动层与主动层的厚度比是主要的几何设计变量。相对于主动层材料的刚度选择被动层的刚度(杨氏模量)是一个重要的与材料相关的设计选择。对于单压电晶片配置,使用尽可能高刚度的被动材料是有益的,而对于三层双压电晶片配置,被动材料应具有低刚度。在所有情况下增大主动材料的横向机电耦合系数都会提高动态EMCF。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f30/6189939/f557a5f64ad1/micromachines-07-00012-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验