Suppr超能文献

高分辨率航空影像语义标注的密集金字塔网络方法

High-Resolution Aerial Imagery Semantic Labeling with Dense Pyramid Network.

机构信息

Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China.

School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China.

出版信息

Sensors (Basel). 2018 Nov 5;18(11):3774. doi: 10.3390/s18113774.

Abstract

Semantic segmentation of high-resolution aerial images is of great importance in certain fields, but the increasing spatial resolution brings large intra-class variance and small inter-class differences that can lead to classification ambiguities. Based on high-level contextual features, the deep convolutional neural network (DCNN) is an effective method to deal with semantic segmentation of high-resolution aerial imagery. In this work, a novel dense pyramid network (DPN) is proposed for semantic segmentation. The network starts with group convolutions to deal with multi-sensor data in channel wise to extract feature maps of each channel separately; by doing so, more information from each channel can be preserved. This process is followed by the channel shuffle operation to enhance the representation ability of the network. Then, four densely connected convolutional blocks are utilized to both extract and take full advantage of features. The pyramid pooling module combined with two convolutional layers are set to fuse multi-resolution and multi-sensor features through an effective global scenery prior manner, producing the probability graph for each class. Moreover, the median frequency balanced focal loss is proposed to replace the standard cross entropy loss in the training phase to deal with the class imbalance problem. We evaluate the dense pyramid network on the International Society for Photogrammetry and Remote Sensing (ISPRS) Vaihingen and Potsdam 2D semantic labeling dataset, and the results demonstrate that the proposed framework exhibits better performances, compared to the state of the art baseline.

摘要

高分辨率航空图像的语义分割在某些领域非常重要,但不断增加的空间分辨率带来了较大的类内方差和较小的类间差异,这可能导致分类模糊。基于高层上下文特征,深度卷积神经网络(DCNN)是处理高分辨率航空图像语义分割的有效方法。在这项工作中,提出了一种新颖的密集金字塔网络(DPN)用于语义分割。该网络首先使用分组卷积在通道上处理多传感器数据,以分别提取每个通道的特征图;通过这种方式,可以保留每个通道的更多信息。然后,通过通道混洗操作增强网络的表示能力。接下来,利用四个密集连接的卷积块来提取和充分利用特征。金字塔池化模块与两个卷积层结合,通过有效的全局场景先验方式融合多分辨率和多传感器特征,生成每个类别的概率图。此外,在训练阶段提出了中值频率平衡焦点损失来替代标准交叉熵损失,以解决类不平衡问题。我们在国际摄影测量与遥感学会(ISPRS)Vaihingen 和 Potsdam 2D 语义标注数据集上评估了密集金字塔网络,结果表明,与最先进的基线相比,所提出的框架表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d60/6263496/06b8ba8428b4/sensors-18-03774-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验