Suppr超能文献

用于遥感图像语义分割的几何边界引导特征融合与空间语义上下文聚合

Geometric Boundary Guided Feature Fusion and Spatial-Semantic Context Aggregation for Semantic Segmentation of Remote Sensing Images.

作者信息

Wang Yupei, Zhang Haoran, Hu Yongkang, Hu Xiaoxing, Chen Liang, Hu Shanqing

出版信息

IEEE Trans Image Process. 2023;32:6373-6385. doi: 10.1109/TIP.2023.3326400. Epub 2023 Nov 28.

Abstract

Semantic segmentation of remote sensing images aims to achieve pixel-level semantic category assignment for input images. This task has achieved significant advances with the rapid development of deep neural network. Most current methods mainly focus on effectively fusing the low-level spatial details and high-level semantic cues. Other methods also propose to incorporate the boundary guidance to obtain boundary preserving segmentation. However, current methods treat the multi-level feature fusion and the boundary guidance as two separate tasks, resulting in sub-optimal solutions. Moreover, due to the large inter-class difference and small intra-class consistency within remote sensing images, current methods often fail to accurately aggregate the long-range contextual cues. These critical issues make current methods fail to achieve satisfactory segmentation predictions, which severely hinder downstream applications. To this end, we first propose a novel boundary guided multi-level feature fusion module to seamlessly incorporate the boundary guidance into the multi-level feature fusion operations. Meanwhile, in order to further enforce the boundary guidance effectively, we employ a geometric-similarity-based boundary loss function. In this way, under the explicit guidance of boundary constraint, the multi-level features are effectively combined. In addition, a channel-wise correlation guided spatial-semantic context aggregation module is presented to effectively aggregate the contextual cues. In this way, subtle but meaningful contextual cues about pixel-wise spatial context and channel-wise semantic correlation are effectively aggregated, leading to spatial-semantic context aggregation. Extensive qualitative and quantitative experimental results on ISPRS Vaihingen and GaoFen-2 datasets demonstrate the effectiveness of the proposed method.

摘要

遥感图像的语义分割旨在为输入图像实现像素级语义类别分配。随着深度神经网络的快速发展,该任务已取得显著进展。当前大多数方法主要专注于有效融合低级空间细节和高级语义线索。其他方法还提出纳入边界引导以获得保留边界的分割。然而,当前方法将多级特征融合和边界引导视为两个独立任务,导致次优解决方案。此外,由于遥感图像中类间差异大且类内一致性小,当前方法常常无法准确聚合远距离上下文线索。这些关键问题使得当前方法无法实现令人满意的分割预测,严重阻碍了下游应用。为此,我们首先提出一种新颖的边界引导多级特征融合模块,将边界引导无缝纳入多级特征融合操作中。同时,为了进一步有效强化边界引导,我们采用基于几何相似性的边界损失函数。通过这种方式,在边界约束的明确引导下,多级特征得以有效组合。此外,还提出了一种通道相关性引导的空间语义上下文聚合模块,以有效聚合上下文线索。通过这种方式,关于像素级空间上下文和通道级语义相关性的细微但有意义的上下文线索得以有效聚合,从而实现空间语义上下文聚合。在ISPRS Vaihingen和高分二号数据集上进行的大量定性和定量实验结果证明了所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验