Suppr超能文献

SNARE 依赖性膜融合引发小鼠血小板α 颗粒基质解凝聚。

SNARE-dependent membrane fusion initiates α-granule matrix decondensation in mouse platelets.

机构信息

Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR.

Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY; and.

出版信息

Blood Adv. 2018 Nov 13;2(21):2947-2958. doi: 10.1182/bloodadvances.2018019158.

Abstract

Platelet α-granule cargo release is fundamental to both hemostasis and thrombosis. Granule matrix hydration is a key regulated step in this process, yet its mechanism is poorly understood. In endothelial cells, there is evidence for 2 modes of cargo release: a jack-in-the-box mechanism of hydration-dependent protein phase transitions and an actin-driven granule constriction/extrusion mechanism. The third alternative considered is a prefusion, channel-mediated granule swelling, analogous to the membrane "ballooning" seen in procoagulant platelets. Using thrombin-stimulated platelets from a set of secretion-deficient, soluble -ethylmaleimide factor attachment protein receptor (SNARE) mutant mice and various ultrastructural approaches, we tested predictions of these mechanisms to distinguish which best explains the α-granule release process. We found that the granule decondensation/hydration required for cargo expulsion was (1) blocked in fusion-protein-deficient platelets; (2) characterized by a fusion-dependent transition in granule size in contrast to a preswollen intermediate; (3) determined spatially with α-granules located close to the plasma membrane (PM) decondensing more readily; (4) propagated from the site of granule fusion; and (5) traced, in 3-dimensional space, to individual granule fusion events at the PM or less commonly at the canalicular system. In sum, the properties of α-granule decondensation/matrix hydration strongly indicate that α-granule cargo expulsion is likely by a jack-in-the-box mechanism rather than by gradual channel-regulated water influx or by a granule-constriction mechanism. These experiments, in providing a structural and mechanistic basis for cargo expulsion, should be informative in understanding the α-granule release reaction in the context of hemostasis and thrombosis.

摘要

血小板α颗粒内容物的释放对于止血和血栓形成都至关重要。颗粒基质的水合作用是这个过程中的一个关键调节步骤,但它的机制还了解甚少。在内皮细胞中,有证据表明有两种货物释放模式:一种是依赖于水合作用的蛋白相转变的插销盒机制,另一种是肌动蛋白驱动的颗粒收缩/挤出机制。第三种被认为是融合前、通道介导的颗粒肿胀,类似于促凝血小板中观察到的膜“气球样”膨胀。使用一组分泌缺陷的、可溶性 -乙基maleimide 因子附着蛋白受体(SNARE)突变小鼠的凝血酶刺激血小板和各种超微结构方法,我们测试了这些机制的预测,以区分哪种机制最能解释α颗粒释放过程。我们发现,货物排出所需的颗粒去凝聚/水合作用:(1)在融合蛋白缺陷的血小板中被阻断;(2)与预膨胀的中间产物相反,颗粒大小的融合依赖性转变为特征;(3)从空间上确定,靠近质膜(PM)去凝聚的α颗粒更容易;(4)从颗粒融合的部位传播;(5)在三维空间中追踪,在 PM 处或较少在小管系统处追踪到单个颗粒融合事件。总之,α颗粒去凝聚/基质水合的特性强烈表明,α颗粒货物的排出可能是通过插销盒机制,而不是通过逐渐的通道调节水流入或通过颗粒收缩机制。这些实验为货物排出提供了结构和机制基础,应该有助于理解止血和血栓形成背景下的α颗粒释放反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/215b/6234365/c370b4729711/advances019158absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验