Suppr超能文献

周期性、抑制和哺乳动物生物钟的分子结构。

Periodicity, repression, and the molecular architecture of the mammalian circadian clock.

机构信息

Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.

出版信息

Eur J Neurosci. 2020 Jan;51(1):139-165. doi: 10.1111/ejn.14254. Epub 2018 Dec 8.

Abstract

Large molecular machines regulate daily cycles of transcriptional activity and help generate rhythmic behavior. In recent years, structural and biochemical analyses have elucidated a number of principles guiding the interactions of proteins that form the basis of circadian timing. In its simplest form, the circadian clock is composed of a transcription/translation feedback loop. However, this description elides a complicated process of activator recruitment, chromatin decompaction, recruitment of coactivators, expression of repressors, formation of a repressive complex, repression of the activators, and ultimately degradation of the repressors and reinitiation of the cycle. Understanding the core principles underlying the clock requires careful examination of molecular and even atomic level details of these processes. Here, we review major structural and biochemical findings in circadian biology and make the argument that shared protein interfaces within the clockwork are critical for both the generation of rhythmicity and timing of the clock.

摘要

大型分子机器调节转录活性的日常循环,有助于产生有节奏的行为。近年来,结构和生化分析阐明了许多指导形成生物钟基础的蛋白质相互作用的原则。从最简单的形式来看,生物钟由转录/翻译反馈环组成。然而,这种描述忽略了一个复杂的过程,即激活剂的招募、染色质松解、共激活剂的招募、抑制剂的表达、抑制复合物的形成、抑制剂对激活剂的抑制,以及最终抑制剂的降解和循环的重新开始。要理解时钟的核心原则,就需要仔细检查这些过程的分子甚至原子水平的细节。在这里,我们回顾了生物钟生物学中的主要结构和生化发现,并提出了一个观点,即时钟内部的共享蛋白质界面对于节律的产生和时钟的定时都至关重要。

相似文献

1
Periodicity, repression, and the molecular architecture of the mammalian circadian clock.
Eur J Neurosci. 2020 Jan;51(1):139-165. doi: 10.1111/ejn.14254. Epub 2018 Dec 8.
2
Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1560-1565. doi: 10.1073/pnas.1615310114. Epub 2017 Jan 31.
3
Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
Curr Biol. 2007 Jul 3;17(13):1091-100. doi: 10.1016/j.cub.2007.05.048. Epub 2007 Jun 21.
4
The circadian clock, aging and its implications in cancer.
Neoplasia. 2023 Jul;41:100904. doi: 10.1016/j.neo.2023.100904. Epub 2023 May 4.
5
Molecular analysis of mammalian circadian rhythms.
Annu Rev Physiol. 2001;63:647-76. doi: 10.1146/annurev.physiol.63.1.647.
6
CLOCK stabilizes CYCLE to initiate clock function in .
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10972-10977. doi: 10.1073/pnas.1707143114. Epub 2017 Sep 25.
7
The HP1α protein is mandatory to repress the circadian clock and its output genes during the 12 h period of transcriptional repression.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2213075120. doi: 10.1073/pnas.2213075120. Epub 2023 Feb 15.
8
Circadian oscillator proteins across the kingdoms of life: structural aspects.
BMC Biol. 2019 Feb 18;17(1):13. doi: 10.1186/s12915-018-0623-3.
9
Biochemical mechanisms of period control within the mammalian circadian clock.
Semin Cell Dev Biol. 2022 Jun;126:71-78. doi: 10.1016/j.semcdb.2021.04.012. Epub 2021 Apr 28.
10
Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish.
Am J Physiol Regul Integr Comp Physiol. 2012 Jan 1;302(1):R193-206. doi: 10.1152/ajpregu.00367.2011. Epub 2011 Oct 26.

引用本文的文献

1
2
Time of Day-Dependent Responses to Cisplatin Treatment in a Male Mouse Model of Hepatoma.
J Biol Rhythms. 2025 Jul 24:7487304251349893. doi: 10.1177/07487304251349893.
4
CRYing for balance: a repressor lingers through peak circadian transcription.
EMBO J. 2025 May 30. doi: 10.1038/s44318-025-00467-4.
5
Evolution of canonical circadian clock genes underlies unique sleep strategies of marine mammals for secondary aquatic adaptation.
PLoS Genet. 2025 Mar 18;21(3):e1011598. doi: 10.1371/journal.pgen.1011598. eCollection 2025 Mar.
6
The impact of circadian rhythm disruption on oxaliplatin tolerability and pharmacokinetics in Cry1Cry2 mice under constant darkness.
Arch Toxicol. 2025 Apr;99(4):1417-1429. doi: 10.1007/s00204-025-03968-7. Epub 2025 Feb 4.
8
Phosphorylation of DNA-binding domains of CLOCK-BMAL1 complex for PER-dependent inhibition in circadian clock of mammalian cells.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2316858121. doi: 10.1073/pnas.2316858121. Epub 2024 May 28.
9
Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2.
J Biol Chem. 2023 Dec;299(12):105451. doi: 10.1016/j.jbc.2023.105451. Epub 2023 Nov 10.

本文引用的文献

1
CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5986-5991. doi: 10.1073/pnas.1721076115. Epub 2018 May 21.
2
Two transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5980-5985. doi: 10.1073/pnas.1721371115. Epub 2018 May 21.
3
An evolutionary hotspot defines functional differences between CRYPTOCHROMES.
Nat Commun. 2018 Mar 19;9(1):1138. doi: 10.1038/s41467-018-03503-6.
5
Macromolecular Assemblies of the Mammalian Circadian Clock.
Mol Cell. 2017 Sep 7;67(5):770-782.e6. doi: 10.1016/j.molcel.2017.07.017.
6
Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7516-E7525. doi: 10.1073/pnas.1702014114. Epub 2017 Aug 22.
7
Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor.
Structure. 2017 Aug 1;25(8):1187-1194.e3. doi: 10.1016/j.str.2017.05.023. Epub 2017 Jun 29.
8
A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms.
Mol Cell. 2017 May 18;66(4):447-457.e7. doi: 10.1016/j.molcel.2017.04.011. Epub 2017 May 11.
9
Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1560-1565. doi: 10.1073/pnas.1615310114. Epub 2017 Jan 31.
10
The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors.
Photochem Photobiol. 2017 Jan;93(1):93-103. doi: 10.1111/php.12669. Epub 2017 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验