Suppr超能文献

从量子化学拓扑学观点看铜(I)配合物光致几何变化的起源。

Origin of the Photoinduced Geometrical Change of Copper(I) Complexes from the Quantum Chemical Topology View.

机构信息

Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.

出版信息

Chemistry. 2019 Jan 14;25(3):775-784. doi: 10.1002/chem.201804596. Epub 2018 Dec 11.

Abstract

Copper(I) complexes (CICs) are of great interest due to their applications as redox mediators and molecular switches. CICs present drastic geometrical change in their excited states, which interferes with their luminescence properties. The photophysical process has been extensively studied by several time-resolved methods to gain an understanding of the dynamics and mechanism of the torsion, which has been explained in terms of a Jahn-Teller effect. Here, we propose an alternative explanation for the photoinduced structural change of CICs, based on electron density redistribution. After photoexcitation of a CIC (S →S ), a metal-to-ligand charge transfer stabilizes the ligand and destabilizes the metal. A subsequent electron transfer, through an intersystem crossing process, followed by an internal conversion (S →T →T ), intensifies the energetic differences between the metal and ligand within the complex. The energy profile of each state is the result of the balance between metal and ligand energy changes. The loss of electrons originates an increase in the attractive potential energy within the copper basin, which is not compensated by the associated reduction of the repulsive atomic potential. To counterbalance the atomic destabilization, the valence shell of the copper center is polarized (defined by ∇ ρ(r) and ∇ V (r)) during the deactivation path. This polarization increases the magnitude of the intra-atomic nuclear-electron interactions within the copper atom and provokes the flattening of the structure to obtain the geometry with the maximum interaction between the charge depletions of the metal and the charge concentrations of the ligand.

摘要

铜(I)配合物(CICs)因其作为氧化还原介体和分子开关的应用而备受关注。CICs 在其激发态会发生剧烈的几何变化,这会干扰它们的发光性质。已经通过几种时间分辨方法广泛研究了光物理过程,以了解扭转的动力学和机制,这可以用 Jahn-Teller 效应来解释。在这里,我们提出了一种基于电子密度重新分布的替代解释,用于解释 CIC 光致结构变化。在 CIC(S →S)的光激发之后,金属到配体的电荷转移稳定了配体并使金属不稳定。随后通过系间窜越过程发生电子转移,然后发生内转换(S →T →T),从而加剧了配体与金属之间在配合物中的能量差异。每个状态的能量分布是金属和配体能量变化之间平衡的结果。电子的损失导致铜盆地内的吸引力势能增加,而这并没有被相关的原子斥力势能的减少所补偿。为了平衡原子的不稳定性,在去活化路径中,铜中心的价壳层被极化(由∇ ρ(r) 和∇ V (r)定义)。这种极化增加了铜原子内原子间核-电子相互作用的幅度,并促使结构扁平化,以获得金属的电荷耗尽和配体的电荷浓度之间最大相互作用的几何形状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验