文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

胰岛素/IGF 信号级联调节 SUMOylation 以调节 中的衰老和蛋白质稳态。

The insulin/IGF signaling cascade modulates SUMOylation to regulate aging and proteostasis in .

机构信息

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel.

Departments of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Elife. 2018 Nov 7;7:e38635. doi: 10.7554/eLife.38635.


DOI:10.7554/eLife.38635
PMID:30403374
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6277199/
Abstract

Although aging-regulating pathways were discovered a few decades ago, it is not entirely clear how their activities are orchestrated, to govern lifespan and proteostasis at the organismal level. Here, we utilized the nematode to examine whether the alteration of aging, by reducing the activity of the Insulin/IGF signaling (IIS) cascade, affects protein SUMOylation. We found that IIS activity promotes the SUMOylation of the germline protein, CAR-1, thereby shortening lifespan and impairing proteostasis. In contrast, the expression of mutated CAR-1, that cannot be SUMOylated at residue 185, extends lifespan and enhances proteostasis. A mechanistic analysis indicated that CAR-1 mediates its aging-altering functions, at least partially, through the notch-like receptor . Our findings unveil a novel regulatory axis in which SUMOylation is utilized to integrate the aging-controlling functions of the IIS and of the germline and provide new insights into the roles of SUMOylation in the regulation of organismal aging.

摘要

尽管衰老调节途径在几十年前就被发现了,但它们的活动如何协调以在机体水平上控制寿命和蛋白质稳态还不完全清楚。在这里,我们利用线虫来研究通过降低胰岛素/胰岛素样生长因子信号(IIS)级联的活性来改变衰老是否会影响蛋白质 SUMO 化。我们发现,IIS 活性促进生殖系蛋白 CAR-1 的 SUMO 化,从而缩短寿命并损害蛋白质稳态。相比之下,不能在残基 185 处被 SUMO 化的突变型 CAR-1 的表达延长了寿命并增强了蛋白质稳态。机制分析表明,CAR-1 通过 Notch 样受体介导其改变衰老的功能,至少部分是这样。我们的发现揭示了一个新的调节轴,其中 SUMO 化被用来整合 IIS 和生殖系的衰老控制功能,并为 SUMO 化在调节机体衰老中的作用提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/57d43211a95b/elife-38635-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/69109983f01b/elife-38635-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/128a942c63bf/elife-38635-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/f8661e8920de/elife-38635-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/5402b71f2aa9/elife-38635-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/8593089f5b98/elife-38635-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/98e8cf6ce160/elife-38635-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/d3b0ce9d3e4b/elife-38635-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/740fcc498530/elife-38635-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/8ff163f84c65/elife-38635-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/103553ba5871/elife-38635-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/587fd690a797/elife-38635-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/8db88cdf6228/elife-38635-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/23868a812ce7/elife-38635-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/ff398823c028/elife-38635-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/daba44a9e969/elife-38635-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/1840d9a71ad1/elife-38635-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/1d313efd255a/elife-38635-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/ecb58f6df0c7/elife-38635-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/08686a7edf2d/elife-38635-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/e67cf01f4e99/elife-38635-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/57d43211a95b/elife-38635-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/69109983f01b/elife-38635-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/128a942c63bf/elife-38635-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/f8661e8920de/elife-38635-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/5402b71f2aa9/elife-38635-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/8593089f5b98/elife-38635-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/98e8cf6ce160/elife-38635-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/d3b0ce9d3e4b/elife-38635-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/740fcc498530/elife-38635-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/8ff163f84c65/elife-38635-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/103553ba5871/elife-38635-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/587fd690a797/elife-38635-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/8db88cdf6228/elife-38635-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/23868a812ce7/elife-38635-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/ff398823c028/elife-38635-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/daba44a9e969/elife-38635-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/1840d9a71ad1/elife-38635-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/1d313efd255a/elife-38635-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/ecb58f6df0c7/elife-38635-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/08686a7edf2d/elife-38635-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/e67cf01f4e99/elife-38635-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42c/6277199/57d43211a95b/elife-38635-fig7.jpg

相似文献

[1]
The insulin/IGF signaling cascade modulates SUMOylation to regulate aging and proteostasis in .

Elife. 2018-11-7

[2]
Modulation of caveolae by insulin/IGF-1 signaling regulates aging of .

EMBO Rep. 2018-6-26

[3]
Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in .

Mol Cells. 2022-11-30

[4]
Temporal requirements of SKN-1/NRF as a regulator of lifespan and proteostasis in Caenorhabditis elegans.

PLoS One. 2021

[5]
Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling.

Nat Genet. 2001-6

[6]
Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans.

Aging Cell. 2013-9-4

[7]
Untangling Longevity, Dauer, and Healthspan in Caenorhabditis elegans Insulin/IGF-1-Signalling.

Gerontology. 2017-9-22

[8]
Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1.

Biosci Biotechnol Biochem. 2017-10

[9]
The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster.

BMB Rep. 2016-2

[10]
Insulin/IGF-1 signaling and heat stress differentially regulate HSF1 activities in germline development.

Cell Rep. 2021-8-31

引用本文的文献

[1]
RANBP9 and RANBP10 cooperate in regulating non-small cell lung cancer proliferation.

J Exp Clin Cancer Res. 2025-8-29

[2]
WDR26-related Skraban-Deardorff syndrome: clinical, genetic and pathomechanistic insights.

Eur J Med Res. 2025-8-18

[3]
A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling.

Nat Cell Biol. 2025-1

[4]
SUMOylation at the crossroads of gut health: insights into physiology and pathology.

Cell Commun Signal. 2024-8-19

[5]
Regulation of the proteostasis network by the neuronal system.

Front Mol Biosci. 2023-11-2

[6]
A short peptide protects from age-onset proteotoxicity.

Aging Cell. 2023-12

[7]
Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications.

MedComm (2020). 2023-5-2

[8]
Biomarkers of aging.

Sci China Life Sci. 2023-5

[9]
The Rab GTPase activating protein TBC-2 regulates endosomal localization of DAF-16 FOXO and lifespan.

PLoS Genet. 2022-8

[10]
Insights Into the Links Between Proteostasis and Aging From .

Front Aging. 2022-3-18

本文引用的文献

[1]
Modulation of caveolae by insulin/IGF-1 signaling regulates aging of .

EMBO Rep. 2018-6-26

[2]
SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans.

PLoS Genet. 2017-12-12

[3]
The SUMO system in Caenorhabditis elegans development.

Int J Dev Biol. 2017

[4]
Interconnection of Estrogen/Testosterone Metabolism and Mevalonate Pathway in Breast and Prostate Cancers.

Curr Mol Pharmacol. 2017

[5]
DAF-18/PTEN locally antagonizes insulin signalling to couple germline stem cell proliferation to oocyte needs in C. elegans.

Development. 2015-12-15

[6]
RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in Caenorhabditis elegans.

Proc Natl Acad Sci U S A. 2015-8-4

[7]
SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1.

Oncogene. 2016-2-4

[8]
Differential regulation of the heat shock factor 1 and DAF-16 by neuronal nhl-1 in the nematode C. elegans.

Cell Rep. 2014-12-24

[9]
The roles of cellular and organismal aging in the development of late-onset maladies.

Annu Rev Pathol. 2014-10-17

[10]
Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging.

Proc Natl Acad Sci U S A. 2014-9-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索