Suppr超能文献

DAF-18/PTEN在局部拮抗胰岛素信号传导,从而使秀丽隐杆线虫的生殖系干细胞增殖与卵母细胞需求相匹配。

DAF-18/PTEN locally antagonizes insulin signalling to couple germline stem cell proliferation to oocyte needs in C. elegans.

作者信息

Narbonne Patrick, Maddox Paul S, Labbé Jean-Claude

机构信息

Département de Pathologie et Biologie Cellulaire, Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada H3T 1J4

Département de Pathologie et Biologie Cellulaire, Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada H3T 1J4 Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Development. 2015 Dec 15;142(24):4230-41. doi: 10.1242/dev.130252. Epub 2015 Nov 9.

Abstract

During development, stem cell populations rapidly proliferate to populate the expanding tissues and organs. During this phase, nutrient status, by systemically affecting insulin/IGF-1 signalling, largely dictates stem cell proliferation rates. In adults, however, differentiated stem cell progeny requirements are generally reduced and vary according to the spatiotemporal needs of each tissue. We demonstrate here that differential regulation of germline stem cell proliferation rates in Caenorhabditis elegans adults is accomplished through localized neutralization of insulin/IGF-1 signalling, requiring DAF-18/PTEN, but not DAF-16/FOXO. Indeed, the specific accumulation of oocytes, the terminally differentiated stem cell progeny, triggers a feedback signal that locally antagonizes insulin/IGF-1 signalling outputs in the germ line, regardless of their systemic levels, to block germline stem cell proliferation. Thus, during adulthood, stem cells can differentially respond within tissues to otherwise equal insulin/IGF-1 signalling inputs, according to the needs for production of their immediate terminally differentiated progeny.

摘要

在发育过程中,干细胞群体迅速增殖以填充不断扩大的组织和器官。在此阶段,营养状况通过系统性地影响胰岛素/IGF-1信号传导,在很大程度上决定了干细胞的增殖速率。然而,在成体中,分化的干细胞后代需求通常会减少,并根据每个组织的时空需求而有所不同。我们在此证明,秀丽隐杆线虫成体中生殖系干细胞增殖速率的差异调节是通过局部中和胰岛素/IGF-1信号传导来实现的,这需要DAF-18/PTEN,但不需要DAF-16/FOXO。事实上,终末分化的干细胞后代——卵母细胞的特异性积累会触发一个反馈信号,该信号在生殖系中局部拮抗胰岛素/IGF-1信号输出,而不管其全身水平如何,从而阻止生殖系干细胞增殖。因此,在成年期,干细胞可以根据其直接终末分化后代产生的需求,在组织内对原本相同的胰岛素/IGF-1信号输入做出不同反应。

相似文献

1
DAF-18/PTEN locally antagonizes insulin signalling to couple germline stem cell proliferation to oocyte needs in C. elegans.
Development. 2015 Dec 15;142(24):4230-41. doi: 10.1242/dev.130252. Epub 2015 Nov 9.
2
DAF-18/PTEN signals through AAK-1/AMPK to inhibit MPK-1/MAPK in feedback control of germline stem cell proliferation.
PLoS Genet. 2017 Apr 14;13(4):e1006738. doi: 10.1371/journal.pgen.1006738. eCollection 2017 Apr.
4
C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.
PLoS Genet. 2017 May 26;13(5):e1006801. doi: 10.1371/journal.pgen.1006801. eCollection 2017 May.
5
Analysis of the C. elegans Germline Stem Cell Pool.
Methods Mol Biol. 2017;1463:1-33. doi: 10.1007/978-1-4939-4017-2_1.
6
Cell-nonautonomous signaling of FOXO/DAF-16 to the stem cells of Caenorhabditis elegans.
PLoS Genet. 2012;8(8):e1002836. doi: 10.1371/journal.pgen.1002836. Epub 2012 Aug 16.
7
Insulin and germline proliferation in Caenorhabditis elegans.
Vitam Horm. 2011;87:61-77. doi: 10.1016/B978-0-12-386015-6.00024-X.
9
Germline stem cell arrest inhibits the collapse of somatic proteostasis early in Caenorhabditis elegans adulthood.
Aging Cell. 2013 Oct;12(5):814-22. doi: 10.1111/acel.12110. Epub 2013 Jun 28.
10
Insulin/IGF-1 signaling and heat stress differentially regulate HSF1 activities in germline development.
Cell Rep. 2021 Aug 31;36(9):109623. doi: 10.1016/j.celrep.2021.109623.

引用本文的文献

1
Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells.
PLoS Genet. 2024 Dec 23;20(12):e1011351. doi: 10.1371/journal.pgen.1011351. eCollection 2024 Dec.
2
Bidirectional transfer of a small membrane-impermeable molecule between the Caenorhabditis elegans intestine and germline.
J Biol Chem. 2024 Dec;300(12):107963. doi: 10.1016/j.jbc.2024.107963. Epub 2024 Nov 5.
4
The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods.
PLoS Genet. 2023 Jun 29;19(6):e1010804. doi: 10.1371/journal.pgen.1010804. eCollection 2023 Jun.
5
Formation of benign tumors by stem cell deregulation.
PLoS Genet. 2022 Oct 27;18(10):e1010434. doi: 10.1371/journal.pgen.1010434. eCollection 2022 Oct.
6
Reproductive Aging in : From Molecules to Ecology.
Front Cell Dev Biol. 2021 Sep 16;9:718522. doi: 10.3389/fcell.2021.718522. eCollection 2021.
7
Germline Stem and Progenitor Cell Aging in .
Front Cell Dev Biol. 2021 Jul 8;9:699671. doi: 10.3389/fcell.2021.699671. eCollection 2021.
10
Molecular basis of reproductive senescence: insights from model organisms.
J Assist Reprod Genet. 2021 Jan;38(1):17-32. doi: 10.1007/s10815-020-01959-4. Epub 2020 Oct 1.

本文引用的文献

1
Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in Caenorhabditis elegans.
Genetics. 2015 Sep;201(1):167-84. doi: 10.1534/genetics.115.178061. Epub 2015 Jul 8.
3
Investigating the regulation of stem and progenitor cell mitotic progression by in situ imaging.
Curr Biol. 2015 May 4;25(9):1123-34. doi: 10.1016/j.cub.2015.02.054. Epub 2015 Mar 26.
5
Transit-amplifying cells orchestrate stem cell activity and tissue regeneration.
Cell. 2014 May 8;157(4):935-49. doi: 10.1016/j.cell.2014.02.057.
6
Geriatric muscle stem cells switch reversible quiescence into senescence.
Nature. 2014 Feb 20;506(7488):316-21. doi: 10.1038/nature13013. Epub 2014 Feb 12.
7
Insulin/insulin-like growth factor signaling in C. elegans.
WormBook. 2013 Dec 26:1-43. doi: 10.1895/wormbook.1.164.1.
8
Mating induces shrinking and death in Caenorhabditis mothers.
Science. 2014 Jan 31;343(6170):536-40. doi: 10.1126/science.1242958. Epub 2013 Dec 19.
9
Males shorten the life span of C. elegans hermaphrodites via secreted compounds.
Science. 2014 Jan 31;343(6170):541-4. doi: 10.1126/science.1244160. Epub 2013 Nov 29.
10
Nutritional regulation of stem and progenitor cells in Drosophila.
Development. 2013 Dec;140(23):4647-56. doi: 10.1242/dev.079087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验