CIRAD, UMR AGAP, F-34398 Montpellier, France.
AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
Mol Biol Evol. 2019 Jan 1;36(1):97-111. doi: 10.1093/molbev/msy199.
Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as "AB," "AAB," or "ABB" based on morphological characters. We used NGS sequence data to characterize the A versus B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies.
混种和多倍化是主要的真核生物基因组进化过程。它们对基因组动态的影响因系统而异,部分仍未被破译。许多香蕉品种是 Musa acuminata(A 基因组)和 M. balbisiana(B 基因组)之间的三倍体(有时是二倍体)种间杂种。它们没有或只有很低的育性,通过营养繁殖,根据形态特征被归类为“AB”、“AAB”或“ABB”。我们使用 NGS 序列数据来描述九个二倍体和三倍体种间品种的 A 对 B 染色体组成,比较 A 和 B 基因组的染色体结构,并在多倍体背景下分析 A/B 染色体的分离。我们表明 A 和 B 染色体之间经常发生种间重组。我们在 A 和 B 基因组之间鉴定了两个大的结构变异,一个是相互易位,另一个是倒位,这局部影响了重组,导致三倍体后代的分离扭曲和非整倍体。种间重组和大的结构变异解释了可食用香蕉中观察到的镶嵌基因组。在破译其基因组结构方面前所未有的分辨率使我们能够开始重新审视香蕉品种的起源,并提供了新的信息,以深入了解种间关系对基因组进化的影响。它还将有助于更有效地评估育种策略。