Department of Chemistry and Biotechnology , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan.
Research Center for Computational Design of Advanced Functional Materials (CD-FMat) , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 2, 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan.
J Phys Chem B. 2018 Nov 29;122(47):10736-10745. doi: 10.1021/acs.jpcb.8b09439. Epub 2018 Nov 16.
We demonstrate that Li hopping conduction, which cannot be explained by conventional models i.e., Onsager's theory and Stokes' law, emerges in highly concentrated liquid electrolytes composed of LiBF and sulfolane (SL). Self-diffusion coefficients of Li ( D), BF ( D), and SL ( D) were measured with pulsed-field gradient NMR. In the concentrated electrolytes with molar ratios of SL/LiBF ≤ 3, the ratios D/ D and D/ D become lower than 1, suggesting faster diffusion of Li than SL and BF, and thus the evolution of Li hopping conduction. X-ray crystallographic analysis of the LiBF/SL (1:1) solvate revealed that the two oxygen atoms of the sulfone group are involved in the bridging coordination of two different Li ions. In addition, the BF anion also participates in the bridging coordination of Li. The Raman spectra of the highly concentrated LiBF-SL solution suggested that Li ions are bridged by SL and BF even in the liquid state. Moreover, detailed investigation along with molecular dynamics simulations suggests that Li exchanges ligands (SL and BF) dynamically in the highly concentrated electrolytes, and Li hops from one coordination site to another. The spatial proximity of coordination sites, along with the possible domain structure, is assumed to enable Li hopping conduction. Finally, we demonstrate that Li hopping suppresses concentration polarization in Li batteries, leading to increased limiting current density and improved rate capability compared to the conventional concentration electrolyte. Identification and rationalization of Li ion hopping in concentrated SL electrolytes is expected to trigger a new paradigm of understanding for such unconventional electrolyte systems.
我们证明了,在由 LiBF 和 sulfolane(SL)组成的高浓度液态电解质中,出现了传统模型(即 Onsager 理论和 Stokes 定律)无法解释的 Li 跳跃传导。我们使用脉冲场梯度 NMR 测量了 Li(D)、BF(D)和 SL(D)的自扩散系数。在摩尔比为 SL/LiBF ≤ 3 的浓电解质中,D/ D 和 D/ D 的比值低于 1,表明 Li 的扩散速度快于 SL 和 BF,因此出现了 Li 跳跃传导。对 LiBF/SL(1:1)溶剂化物的 X 射线晶体学分析表明,砜基的两个氧原子参与了两个不同 Li 离子的桥接配位。此外,BF 阴离子也参与了 Li 的桥接配位。高浓度 LiBF-SL 溶液的拉曼光谱表明,即使在液态下,SL 和 BF 也能桥接 Li 离子。此外,详细的研究和分子动力学模拟表明,在高浓度电解质中,Li 动态地交换配体(SL 和 BF),并从一个配位位点跳跃到另一个配位位点。配位位点的空间接近度,以及可能的畴结构,被认为使 Li 跳跃传导成为可能。最后,我们证明了 Li 跳跃抑制了锂电池中的浓度极化,与传统浓度电解质相比,提高了极限电流密度和改善了倍率性能。在高浓度 SL 电解质中识别和合理化 Li 离子跳跃有望为这种非常规电解质系统的理解带来新的范例。