Keating Michael J, Bernard Elijah, Hove Martina, Yuen Ho Martin, Mughal Mehreen, Kt Surabh S, Wishart James F, Lall-Ramnarine Sharon, Messinger Robert J, Biddinger Elizabeth J
Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, United States.
Ph.D. Program in Chemistry, The Graduate Center of City University of New York, CUNY, New York, New York 10016, United States.
J Phys Chem C Nanomater Interfaces. 2025 Jun 10;129(24):10802-10814. doi: 10.1021/acs.jpcc.5c01403. eCollection 2025 Jun 19.
Ionic liquids are tunable solvents composed entirely of ions that have properties desirable as electrolytes for lithium batteries such as nonflammability and a large electrochemical stability window. Solvate ionic liquids are a subclass of ionic liquids that consist of a glyme-based solvent and lithium salt in an equimolar ratio, where Li cation-glyme solvation interactions result in ionic liquid-like properties. LiG4TFSI is a well-studied solvate ionic liquid consisting of equimolar amounts of lithium bis-(trifluoromethylsulfonyl)-imide (LiTFSI) and tetraglyme (G4). In this work, pyrrolidinium ionic liquids with ether-functionalized side chains were synthesized, containing either one ether (EO1) moiety or three ether (EO3) moieties and mixed with LiG4TFSI to form a new class of electrolyte mixtures. Their physical and transport properties, as well as ion solvation structures, were characterized by electrochemical, thermal, rheological, and spectroscopic measurements. The conductivity of the electrolyte mixture composed of EO1:LiTFSI:G4 in a 1:1:1 molar ratio is 2.54 mS/cm at 30 °C, compared to 1.53 mS/cm for LiG4TFSI, an increase of 67%. A significant decrease in the conductivity to 0.279 mS/cm is observed for the EO3:LiTFSI:G4 mixture in a 1:1:0.4 molar ratio. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements revealed that the EO1 cation diffuses significantly faster than the EO3 cation in their respective mixtures. Liquid-state C NMR experiments indicate that Li cations preferentially coordinate with tetraglyme. Li cations do not coordinate with the EO1 cation and coordinate with the EO3 ether side chains only at lower concentrations of tetraglyme. We hypothesize that the oligoether EO3 cation competes with G4 and TFSI for lithium cation solvation in G4-deficient compositions, leading to a largely adverse effect on the mass transport properties of the electrolyte.
离子液体是完全由离子组成的可调节溶剂,具有作为锂电池电解质所需的特性,如不可燃性和较大的电化学稳定窗口。溶剂化离子液体是离子液体的一个子类,由等摩尔比的基于甘醇二甲醚的溶剂和锂盐组成,其中锂离子-甘醇二甲醚溶剂化相互作用导致类似离子液体的性质。LiG4TFSI是一种经过充分研究的溶剂化离子液体,由等摩尔量的双(三氟甲基磺酰)亚胺锂(LiTFSI)和四甘醇二甲醚(G4)组成。在这项工作中,合成了带有醚官能化侧链的吡咯烷鎓离子液体,其含有一个醚(EO1)部分或三个醚(EO3)部分,并与LiG4TFSI混合以形成一类新型电解质混合物。通过电化学、热学、流变学和光谱测量对它们的物理和传输性质以及离子溶剂化结构进行了表征。由摩尔比为1:1:1的EO1:LiTFSI:G4组成的电解质混合物在30℃下的电导率为2.54 mS/cm,相比之下LiG4TFSI为1.53 mS/cm,增加了67%。对于摩尔比为1:1:0.4的EO3:LiTFSI:G4混合物,观察到电导率显著降低至0.279 mS/cm。脉冲场梯度核磁共振(PFG-NMR)测量表明,EO1阳离子在其各自混合物中的扩散速度明显快于EO3阳离子。液态碳核磁共振实验表明,锂离子优先与四甘醇二甲醚配位。锂离子不与EO1阳离子配位,仅在四甘醇二甲醚浓度较低时与EO3醚侧链配位。我们推测,在缺乏G4的组合物中,低聚醚EO3阳离子与G4和TFSI竞争锂离子溶剂化,从而对电解质的质量传输性质产生很大的不利影响。