Liu Lei, Jiang Zhenguo, Rahman Syed, Shams Md Itrat Bin, Jing Benxin, Kannegulla Akash, Cheng Li-Jing
Department of Electrical Engineering, University of Notre Dame, 275 Fitzpatrick, Notre Dame, IN 46556, USA.
Department of Chemical Engineering and Material Science, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202, USA.
Micromachines (Basel). 2016 Apr 25;7(5):75. doi: 10.3390/mi7050075.
We first review the development of a frequency domain quasi-optical terahertz (THz) chemical sensing and imaging platform consisting of a quartz-based microfluidic subsystem in our previous work. We then report the application of this platform to sensing and characterizing of several selected liquid chemical samples from 570⁻630 GHz. THz sensing of chemical mixtures including isopropylalcohol-water (IPA-H₂O) mixtures and acetonitrile-water (ACN-H₂O) mixtures have been successfully demonstrated and the results have shown completely different hydrogen bond dynamics detected in different mixture systems. In addition, the developed platform has been applied to study molecule diffusion at the interface between adjacent liquids in the multi-stream laminar flow inside the microfluidic subsystem. The reported THz microfluidic platform promises real-time and label-free chemical/biological sensing and imaging with extremely broad bandwidth, high spectral resolution, and high spatial resolution.
我们首先回顾一下在我们之前的工作中,一个由基于石英的微流控子系统组成的频域准光学太赫兹(THz)化学传感与成像平台的发展情况。然后我们报告该平台在570⁻630吉赫兹范围内对几种选定液体化学样品进行传感和表征的应用。太赫兹对包括异丙醇 - 水(IPA - H₂O)混合物和乙腈 - 水(ACN - H₂O)混合物在内的化学混合物的传感已成功得到证明,结果显示在不同的混合系统中检测到了完全不同的氢键动力学。此外,所开发的平台已应用于研究微流控子系统内多流层流中相邻液体界面处的分子扩散。所报道的太赫兹微流控平台有望实现具有极宽带宽、高光谱分辨率和高空间分辨率的实时、无标记化学/生物传感与成像。