College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Rd., 310058, Hangzhou, Zhejiang Province, PR China.
Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, 20 Jinying Rd., 510640, Guangzhou, Guangdong Province, PR China.
Biosens Bioelectron. 2021 Sep 15;188:113336. doi: 10.1016/j.bios.2021.113336. Epub 2021 May 14.
Metasurface assisted terahertz (THz) real-time and label-free biosensors have attracted intense attention. However, it is still challenging for specific detection of highly absorptive liquid samples with high sensitivity in the THz range. Here, we incorporated graphene with THz metasurface into a microfluidic cell for sensitive biosensing. The proposed THz graphene-metasurface microfluidic platform can effectively reduce the volume of the sample solution and boost the interaction between biomolecules and THz waves, thus enhancing the sensitivity. As a proof of concept, comparative experiments using other three kinds of microfluidic cells (pure microfluidic cell, metasurface-based microfluidic cell and graphene-based microfluidic cell) were conducted to explore and verify the sensing mechanism, which evidences the high sensitivity of delicate sensing based on the hybrid graphene-metasurface THz microfluidic device. Furthermore, to perform biosensing applications on that basis, specific aptamers were modified on the graphene-metasurface, enabling DNA sequences of foodborne pathogen Escherichia coli O157:H7 to be recognized. Based on the THz microfluidic biosensor, 100 nM DNA short sequences can be successfully detected. The sensing results of antibiotics and DNA based on the graphene-metasurface microfluidic biosensor confirm the superiority of the proposed design and considerable promise in THz biosensing. The novel sensing platform provides the merits of enabling highly sensitive, label-free, low-cost, easy to use, reusable, and real-time biosensing, which opens an exciting prospect for nanomaterial-metasurface hybrid structure assisted THz label-free biosensing in liquid environment.
太赫兹(THz)实时无标记生物传感器的研究受到了广泛关注。然而,在 THz 波段,对于高吸收率的液体样品进行特异性检测仍然具有挑战性,需要提高灵敏度。本文将石墨烯与太赫兹超表面集成到微流控池中,实现了灵敏的生物传感。该太赫兹石墨烯-超表面微流控平台可有效减小样品溶液的体积,增强生物分子与太赫兹波的相互作用,从而提高灵敏度。作为概念验证,通过对比实验,使用三种不同的微流控池(纯微流控池、基于超表面的微流控池和基于石墨烯的微流控池),研究并验证了传感机制,证明了基于混合石墨烯-超表面太赫兹微流控器件的灵敏检测具有较高的灵敏度。此外,为了在此基础上进行生物传感应用,在石墨烯-超表面上修饰了特定的适体,实现了对食源性致病菌大肠杆菌 O157:H7 的 DNA 序列的识别。基于太赫兹微流控生物传感器,可成功检测出 100 nM 的 DNA 短序列。基于石墨烯-超表面微流控生物传感器的抗生素和 DNA 传感结果证实了该设计的优越性,在太赫兹生物传感方面具有广阔的应用前景。该新型传感平台具有灵敏度高、无标记、成本低、使用方便、可重复使用以及实时检测等优点,为纳米材料-超表面混合结构辅助的 THz 无标记生物传感在液体环境中的应用提供了广阔的前景。