Suppr超能文献

利用生物打印和静电纺丝技术制造具有多尺度通道的3D支架结构的新型复合成型技术。

Novel Compound-Forming Technology Using Bioprinting and Electrospinning for Patterning a 3D Scaffold Construct with Multiscale Channels.

作者信息

Sun Yuanshao, Liu Yuanyuan, Li Shuai, Liu Change, Hu Qingxi

机构信息

Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China.

Shanghai Key Laboratory of Intelligent Manufacturing and Roboties, Shanghai University, Shanghai 200444, China.

出版信息

Micromachines (Basel). 2016 Dec 21;7(12):238. doi: 10.3390/mi7120238.

Abstract

One of the biggest challenges for tissue engineering is to efficiently provide oxygen and nutrients to cells on a three-dimensional (3D) engineered scaffold structure. Thus, achieving sufficient vascularization of the structure is a critical problem in tissue engineering. This facilitates the need to develop novel methods to enhance vascularization. Use of patterned hydrogel structures with multiscale channels can be used to achieve the required vascularization. Patterned structures need to be biocompatible and biodegradable. In this study, gelatin was used as the main part of a hydrogel to prepare a biological structure with 3D multiscale channels using bioprinting combined with selection of suitable materials and electrostatic spinning. Human umbilical vein endothelial cells (HUVECs) were then used to confirm efficacy of the structure, inferred from cell viability on different engineered construct designs. HUVECs were seeded on the surface of channels and cultured in vitro. HUVECs showed high viability and diffusion within the construct. This method can be used as a practical platform for the fabrication of engineered construct for vascularization.

摘要

组织工程面临的最大挑战之一是如何在三维(3D)工程支架结构上有效地为细胞提供氧气和营养物质。因此,实现该结构充分的血管化是组织工程中的一个关键问题。这就促使人们需要开发新的方法来增强血管化。使用具有多尺度通道的图案化水凝胶结构可用于实现所需的血管化。图案化结构需要具有生物相容性和可生物降解性。在本研究中,明胶被用作水凝胶的主要成分,通过生物打印结合合适材料的选择和静电纺丝来制备具有3D多尺度通道的生物结构。然后使用人脐静脉内皮细胞(HUVECs)来确认该结构的功效,这是根据不同工程构建设计上的细胞活力推断出来的。将HUVECs接种在通道表面并进行体外培养。HUVECs在构建物中表现出高活力和扩散性。该方法可作为制造用于血管化的工程构建物的实用平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7074/6189956/e4a3b0e0fd82/micromachines-07-00238-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验