Suppr超能文献

一种用于组织工程的具有类微通道多孔结构的水凝胶的简易制备方法。

A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.

机构信息

1 School of Biological and Health Systems Engineering, Arizona State University , Tempe, Arizona.

出版信息

Tissue Eng Part C Methods. 2014 Feb;20(2):169-76. doi: 10.1089/ten.TEC.2013.0176. Epub 2013 Jul 17.

Abstract

Hydrogels are widely used as three-dimensional (3D) tissue engineering scaffolds due to their tissue-like water content, as well as their tunable physical and chemical properties. Hydrogel-based scaffolds are generally associated with nanoscale porosity, whereas macroporosity is highly desirable to facilitate nutrient transfer, vascularization, cell proliferation and matrix deposition. Diverse techniques have been developed for introducing macroporosity into hydrogel-based scaffolds. However, most of these methods involve harsh fabrication conditions that are not cell friendly, result in spherical pore structure, and are not amenable for dynamic pore formation. Human tissues contain abundant microchannel-like structures, such as microvascular network and nerve bundles, yet fabricating hydrogels containing microchannel-like pore structures remains a great challenge. To overcome these limitations, here we aim to develop a facile, cell-friendly method for engineering hydrogels with microchannel-like porosity using stimuli-responsive microfibers as porogens. Microfibers with sizes ranging 150-200 μm were fabricated using a coaxial flow of alginate and calcium chloride solution. Microfibers containing human embryonic kidney (HEK) cells were encapsulated within a 3D gelatin hydrogel, and then exposed to ethylenediaminetetraacetic acid (EDTA) solution at varying doses and duration. Scanning electron microscopy confirmed effective dissolution of alginate microfibers after EDTA treatment, leaving well-defined, interconnected microchannel structures within the 3D hydrogels. Upon release from the alginate fibers, HEK cells showed high viability and enhanced colony formation along the luminal surfaces of the microchannels. In contrast, HEK cells in non-EDTA treated control exhibited isolated cells, which remained entrapped in alginate microfibers. Together, our results showed a facile, cell-friendly process for dynamic microchannel formation within hydrogels, which may simultaneously release cells in 3D hydrogels in a spatiotemporally controlled manner. This platform may be adapted to include other cell-friendly stimuli for porogen removal, such as Matrix metalloproteinase-sensitive peptides or photodegradable gels. While we used HEK cells in this study as proof of principle, the concept described in this study may also be used for releasing clinically relevant cell types, such as smooth muscle and endothelial cells that are useful for repairing tissues involving tubular structures.

摘要

水凝胶由于其类似组织的含水量以及可调节的物理和化学性质,被广泛用作三维(3D)组织工程支架。水凝胶支架通常具有纳米级孔隙率,而大孔率有利于营养物质的转移、血管生成、细胞增殖和基质沉积。已经开发出多种技术来在水凝胶支架中引入大孔率。然而,大多数这些方法涉及苛刻的制造条件,对细胞不友好,导致球形孔结构,并且不适于动态孔形成。人体组织中含有丰富的类似微通道的结构,如微血管网络和神经束,但制造含有类似微通道的孔结构的水凝胶仍然是一个巨大的挑战。为了克服这些限制,我们旨在开发一种简便、对细胞友好的方法,使用响应性微纤维作为成孔剂来工程化具有微通道状孔隙的水凝胶。使用海藻酸钠和氯化钙溶液的同轴流来制造尺寸为 150-200 μm 的微纤维。将含有人胚肾(HEK)细胞的微纤维包封在 3D 明胶水凝胶中,然后用不同剂量和时间的乙二胺四乙酸(EDTA)溶液处理。扫描电子显微镜证实,EDTA 处理后,海藻酸钠微纤维有效溶解,在 3D 水凝胶中留下定义明确、相互连接的微通道结构。从海藻酸钠纤维释放后,HEK 细胞表现出高活力,并沿着微通道的腔表面增强集落形成。相比之下,在未用 EDTA 处理的对照中,HEK 细胞表现出孤立的细胞,这些细胞仍然被困在海藻酸钠微纤维中。总之,我们的结果显示了一种简便、对细胞友好的方法,可在水凝胶中动态形成微通道,同时可以以时空控制的方式在 3D 水凝胶中释放细胞。该平台可以适应包括其他对细胞友好的刺激物在内的用于成孔剂去除的刺激物,例如基质金属蛋白酶敏感肽或光降解凝胶。虽然我们在这项研究中使用 HEK 细胞作为原理证明,但本研究中描述的概念也可用于释放临床上相关的细胞类型,例如平滑肌和内皮细胞,这些细胞对于修复涉及管状结构的组织很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验