Suppr超能文献

增材制造:舟月韧带重建的下一代技术

Additive Manufacturing: The Next Generation of Scapholunate Ligament Reconstruction.

作者信息

Rush Matthew N, Salas Christina, Mottishaw Lorraine, Fountain Damian, Mercer Deana

机构信息

Department of Orthopaedics and Rehabilitation, The University of New Mexico Health Sciences Center, Albuquerque, New Mexico.

Center for Biomedical Engineering, The University of New Mexico, Albuquerque, New Mexico.

出版信息

J Wrist Surg. 2021 Jun 21;10(6):492-501. doi: 10.1055/s-0041-1729993. eCollection 2021 Dec.

Abstract

Ligament reconstruction, as a surgical method used to stabilize joints, requires significant strength and tissue anchoring to restore function. Historically, reconstructive materials have been fraught with problems from an inability to withstand normal physiological loads to difficulties in fabricating the complex organization structure of native tissue at the ligament-to-bone interface. In combination, these factors have prevented the successful realization of nonautograft reconstruction.  A review of recent improvements in additive manufacturing techniques and biomaterials highlight possible options for ligament replacement.  In combination, three dimensional-printing and electrospinning have begun to provide for nonautograft options that can meet the physiological load and architectures of native tissues; however, a combination of manufacturing methods is needed to allow for bone-ligament enthesis. Hybrid biofabrication of bone-ligament tissue scaffolds, through the simultaneous deposition of disparate materials, offer significant advantages over fused manufacturing methods which lack efficient integration between bone and ligament materials.  In this review, we discuss the important chemical and biological properties of ligament enthesis and describe recent advancements in additive manufacturing to meet mechanical and biological requirements for a successful bone-ligament-bone interface.  With continued advancement of additive manufacturing technologies and improved biomaterial properties, tissue engineered bone-ligament scaffolds may soon enter the clinical realm.

摘要

韧带重建作为一种用于稳定关节的外科手术方法,需要强大的强度和组织锚固来恢复功能。从历史上看,重建材料一直存在诸多问题,从无法承受正常生理负荷到在韧带与骨界面处制造天然组织复杂组织结构的困难。综合起来,这些因素阻碍了非自体移植重建的成功实现。对增材制造技术和生物材料近期进展的综述突出了韧带替代的可能选择。三维打印和静电纺丝相结合,已开始提供能够满足天然组织生理负荷和结构的非自体移植选择;然而,需要结合多种制造方法来实现骨 - 韧带结合部。通过同时沉积不同材料对骨 - 韧带组织支架进行混合生物制造,相较于缺乏骨与韧带材料高效整合的熔融制造方法具有显著优势。在本综述中,我们讨论了韧带结合部的重要化学和生物学特性,并描述了增材制造方面的最新进展,以满足成功的骨 - 韧带 - 骨界面的机械和生物学要求。随着增材制造技术的不断进步和生物材料性能的改善,组织工程化骨 - 韧带支架可能很快进入临床领域。

相似文献

1
Additive Manufacturing: The Next Generation of Scapholunate Ligament Reconstruction.
J Wrist Surg. 2021 Jun 21;10(6):492-501. doi: 10.1055/s-0041-1729993. eCollection 2021 Dec.
3
Biofabrication of small diameter tissue-engineered vascular grafts.
Acta Biomater. 2022 Jan 15;138:92-111. doi: 10.1016/j.actbio.2021.11.012. Epub 2021 Nov 13.
4
Design-Build-Validate Strategy to 3D Print Bioglass Gradients for Anterior Cruciate Ligament Enthesis Reconstruction.
Tissue Eng Part C Methods. 2022 Apr;28(4):158-167. doi: 10.1089/ten.TEC.2022.0035.
5
Three-dimensional (3D) printed scaffold and material selection for bone repair.
Acta Biomater. 2019 Jan 15;84:16-33. doi: 10.1016/j.actbio.2018.11.039. Epub 2018 Nov 24.
6
Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
Acta Biomater. 2020 Jun;109:1-20. doi: 10.1016/j.actbio.2020.03.037. Epub 2020 Apr 6.
8
Current state of fabrication technologies and materials for bone tissue engineering.
Acta Biomater. 2018 Oct 15;80:1-30. doi: 10.1016/j.actbio.2018.09.031. Epub 2018 Sep 22.
10
Additively Manufactured Multiphasic Bone-Ligament-Bone Scaffold for Scapholunate Interosseous Ligament Reconstruction.
Adv Healthc Mater. 2019 Jul;8(14):e1900133. doi: 10.1002/adhm.201900133. Epub 2019 May 21.

本文引用的文献

1
Development of 3D bioprinting: From printing methods to biomedical applications.
Asian J Pharm Sci. 2020 Sep;15(5):529-557. doi: 10.1016/j.ajps.2019.11.003. Epub 2019 Dec 17.
2
3D Printing of Bone-Mimetic Scaffold Composed of Gelatin/β-Tri-Calcium Phosphate for Bone Tissue Engineering.
Macromol Biosci. 2020 Dec;20(12):e2000256. doi: 10.1002/mabi.202000256. Epub 2020 Nov 8.
3
Vascularized bone graft and scapholunate fixation for proximal scaphoid nonunion: a case report.
Case Reports Plast Surg Hand Surg. 2020 Jul 13;7(1):83-87. doi: 10.1080/23320885.2020.1791715.
7
Additively Manufactured Multiphasic Bone-Ligament-Bone Scaffold for Scapholunate Interosseous Ligament Reconstruction.
Adv Healthc Mater. 2019 Jul;8(14):e1900133. doi: 10.1002/adhm.201900133. Epub 2019 May 21.
8
Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect.
J Tissue Eng Regen Med. 2019 Aug;13(8):1418-1429. doi: 10.1002/term.2883. Epub 2019 Jun 19.
9
Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:479-490. doi: 10.1016/j.msec.2019.01.127. Epub 2019 Jan 30.
10
Hydroxyapatite/Collagen Three-Dimensional Printed Scaffolds and Their Osteogenic Effects on Human Bone Marrow-Derived Mesenchymal Stem Cells.
Tissue Eng Part A. 2019 Sep;25(17-18):1261-1271. doi: 10.1089/ten.TEA.2018.0201. Epub 2019 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验