Suppr超能文献

贝叶斯框架下的三维光声断层成像。

Three dimensional photoacoustic tomography in Bayesian framework.

机构信息

Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.

Centrum Wiskunde and Informatica, P.O. Box 94079, 1090 GB Amsterdam, Netherlands.

出版信息

J Acoust Soc Am. 2018 Oct;144(4):2061. doi: 10.1121/1.5057109.

Abstract

The image reconstruction problem (or inverse problem) in photoacoustic tomography is to resolve the initial pressure distribution from detected ultrasound waves generated within an object due to an illumination by a short light pulse. Recently, a Bayesian approach to photoacoustic image reconstruction with uncertainty quantification was proposed and studied with two dimensional numerical simulations. In this paper, the approach is extended to three spatial dimensions and, in addition to numerical simulations, experimental data are considered. The solution of the inverse problem is obtained by computing point estimates, i.e., estimate and posterior covariance. These are computed iteratively in a matrix-free form using a biconjugate gradient stabilized method utilizing the adjoint of the acoustic forward operator. The results show that the Bayesian approach can produce accurate estimates of the initial pressure distribution in realistic measurement geometries and that the reliability of these estimates can be assessed.

摘要

光声断层扫描中的图像重建问题(或逆问题)是要根据短光脉冲照射物体内部产生的检测到的超声波来确定初始压力分布。最近,提出了一种贝叶斯方法来进行光声图像重建和不确定性量化,并通过二维数值模拟进行了研究。本文将该方法扩展到三维空间,并考虑了除数值模拟之外的实验数据。通过计算点估计值(即估计值和后验协方差)来获得逆问题的解。这些值通过使用利用声学正向算子的伴随的双共轭梯度稳定化方法以无矩阵形式迭代计算得到。结果表明,贝叶斯方法可以在实际测量几何形状中产生初始压力分布的准确估计,并且可以评估这些估计的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验