Instituto Politécnico Nacional, CEPROBI, Km. 6.5 Carr. Yautepec-Jojutla Col. San Isidro, Calle CEPROBI No. 8, Yautepec, Morelos, Mexico.
Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, CDMX 09340, Mexico.
Int J Biol Macromol. 2019 Feb 1;122:405-409. doi: 10.1016/j.ijbiomac.2018.10.161. Epub 2018 Oct 26.
Simple exponential decaying functions are commonly used for fitting the kinetics of starch digested by amylolytic enzymes. A common assumption is that a sole exponential function can account for the kinetics of the whole digestible starch. Recent studies using logarithm-of-slope (LOS) plots showed that digestion kinetics can exhibit multi-scale behavior, an effect reflecting starch fractions with different digestion characteristics. This work proposed an extension of the widely used Goñi et al.'s model to account for two starch fractions; one fraction linked with fast digestion rate and other with slow digestion rates. The fitting of experimental data was carried out by solving numerically a nonlinear least-squares problem. The estimated parameters have a straightforward interpretation in terms of reaction rates and digestible/resistant starch fractions. Two experimental examples were used for illustrating the performance of the multi-exponential function.
简单指数衰减函数常用于拟合淀粉酶消化淀粉的动力学。一个常见的假设是,单一的指数函数可以解释整个可消化淀粉的动力学。最近使用斜率对数 (LOS) 图的研究表明,消化动力学可能表现出多尺度行为,这一效应反映了具有不同消化特性的淀粉分数。这项工作提出了对广泛使用的 Goñi 等人模型的扩展,以解释两种淀粉分数;一种分数与快速消化速率有关,另一种与缓慢消化速率有关。通过数值求解非线性最小二乘问题来进行实验数据的拟合。估计参数可以直接解释为反应速率和可消化/抗性淀粉分数。使用两个实验示例来说明多指数函数的性能。