Suppr超能文献

一种 DNA 病毒对 NF-κB 信号的诱导和抑制。

Induction and Suppression of NF-κB Signalling by a DNA Virus of .

机构信息

Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom

Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

J Virol. 2019 Jan 17;93(3). doi: 10.1128/JVI.01443-18. Print 2019 Feb 1.

Abstract

Interactions between the insect immune system and RNA viruses have been extensively studied in , in which RNA interference, NF-κB, and JAK-STAT pathways underlie antiviral immunity. In response to RNA interference, insect viruses have convergently evolved suppressors of this pathway that act by diverse mechanisms to permit viral replication. However, interactions between the insect immune system and DNA viruses have received less attention, primarily because few -infecting DNA virus isolates are available. In this study, we used a recently isolated DNA virus of , Kallithea virus (KV; family ), to probe known antiviral immune responses and virus evasion tactics in the context of DNA virus infection. We found that fly mutants for RNA interference and immune deficiency (Imd), but not Toll, pathways are more susceptible to Kallithea virus infection. We identified the Kallithea virus-encoded protein gp83 as a potent inhibitor of Toll signalling, suggesting that Toll mediates antiviral defense against Kallithea virus infection but that it is suppressed by the virus. We found that Kallithea virus gp83 inhibits Toll signalling through the regulation of NF-κB transcription factors. Furthermore, we found that gp83 of the closely related Drosophila innubila nudivirus (DiNV) suppresses Toll signalling, suggesting an evolutionarily conserved function of Toll in defense against DNA viruses. Together, these results provide a broad description of known antiviral pathways in the context of DNA virus infection and identify the first Toll pathway inhibitor in a virus, extending the known diversity of insect virus-encoded immune inhibitors. Coevolution of multicellular organisms and their natural viruses may lead to an intricate relationship in which host survival requires effective immunity and virus survival depends on evasion of such responses. Insect antiviral immunity and reciprocal virus immunosuppression tactics have been well studied in , primarily during RNA, but not DNA, virus infection. Therefore, we describe interactions between a recently isolated DNA virus (Kallithea virus [KV]) and immune processes known to control RNA viruses, such as RNA interference (RNAi) and Imd pathways. We found that KV suppresses the Toll pathway and identified gp83 as a KV-encoded protein that underlies this suppression. This immunosuppressive ability is conserved in another nudivirus, suggesting that the Toll pathway has conserved antiviral activity against DNA nudiviruses, which have evolved suppressors in response. Together, these results indicate that DNA viruses induce and suppress NF-κB responses, and they advance the application of KV as a model to study insect immunity.

摘要

昆虫免疫系统与 RNA 病毒之间的相互作用已在果蝇中得到广泛研究,其中 RNA 干扰、NF-κB 和 JAK-STAT 途径是抗病毒免疫的基础。针对 RNA 干扰,昆虫病毒已经趋同进化出了这种途径的抑制剂,通过多种机制来允许病毒复制。然而,昆虫免疫系统与 DNA 病毒之间的相互作用受到的关注较少,主要是因为可用的感染 DNA 病毒的分离株较少。在这项研究中,我们使用了最近分离的 DNA 病毒—— Kallithea 病毒(KV;家族),在 DNA 病毒感染的背景下探测已知的抗病毒免疫反应和病毒逃避策略。我们发现,对于 RNA 干扰和免疫缺陷(Imd)途径的果蝇突变体,更易感染 Kallithea 病毒。我们鉴定出 Kallithea 病毒编码的蛋白 gp83 是 Toll 信号的强效抑制剂,这表明 Toll 介导了针对 Kallithea 病毒感染的抗病毒防御,但该防御被病毒所抑制。我们发现,Kallithea 病毒 gp83 通过调节 NF-κB 转录因子来抑制 Toll 信号。此外,我们发现,亲缘关系密切的果蝇 innubila nudivirus(DiNV)的 gp83 抑制 Toll 信号,表明 Toll 在防御 DNA 病毒方面具有进化保守的功能。这些结果共同提供了 DNA 病毒感染背景下已知抗病毒途径的广泛描述,并鉴定出了首个在昆虫病毒中抑制 Toll 信号的蛋白,扩展了昆虫病毒编码的免疫抑制剂的已知多样性。多细胞生物及其天然病毒的共同进化可能导致一种复杂的关系,其中宿主的生存需要有效的免疫,而病毒的生存则取决于对这种反应的逃避。昆虫抗病毒免疫和相应的病毒免疫抑制策略已在果蝇中得到了很好的研究,主要是在 RNA 病毒感染期间,但不是在 DNA 病毒感染期间。因此,我们描述了最近分离的 DNA 病毒(Kallithea 病毒[KV])与已知控制 RNA 病毒的免疫过程之间的相互作用,如 RNA 干扰(RNAi)和 Imd 途径。我们发现 KV 抑制了 Toll 途径,并鉴定出 gp83 是这种抑制作用的 KV 编码蛋白。这种免疫抑制能力在另一种 nudivirus 中是保守的,这表明 Toll 途径对 DNA nudiviruses 具有保守的抗病毒活性,而这些病毒已经进化出了相应的抑制剂。这些结果表明,DNA 病毒诱导并抑制 NF-κB 反应,并推动了将 KV 作为研究昆虫免疫的模型的应用。

相似文献

1
Induction and Suppression of NF-κB Signalling by a DNA Virus of .
J Virol. 2019 Jan 17;93(3). doi: 10.1128/JVI.01443-18. Print 2019 Feb 1.
2
Protein-coding circular RNA enhances antiviral immunity via JAK/STAT pathway in .
mBio. 2024 Sep 11;15(9):e0146924. doi: 10.1128/mbio.01469-24. Epub 2024 Aug 19.
5
Insect antiviral innate immunity: pathways, effectors, and connections.
J Mol Biol. 2013 Dec 13;425(24):4921-36. doi: 10.1016/j.jmb.2013.10.006. Epub 2013 Oct 9.
6
RNA interference directs innate immunity against viruses in adult Drosophila.
Science. 2006 Apr 21;312(5772):452-4. doi: 10.1126/science.1125694. Epub 2006 Mar 23.
7
WntD is a feedback inhibitor of Dorsal/NF-kappaB in Drosophila development and immunity.
Nature. 2005 Sep 29;437(7059):746-9. doi: 10.1038/nature04073. Epub 2005 Aug 17.
8
Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):698-703. doi: 10.1073/pnas.1516122113. Epub 2016 Jan 6.
9
Isolation of a natural DNA virus of Drosophila melanogaster, and characterisation of host resistance and immune responses.
PLoS Pathog. 2018 Jun 4;14(6):e1007050. doi: 10.1371/journal.ppat.1007050. eCollection 2018 Jun.

引用本文的文献

2
3
Naturally occurring viruses of reduce offspring number and lifespan.
Proc Biol Sci. 2024 May;291(2023):20240518. doi: 10.1098/rspb.2024.0518. Epub 2024 May 15.
4
MicroRNA-Mediated Host Immune Genes Manipulation Benefits AcMNPV Proliferation in .
J Agric Food Chem. 2023 Nov 2;71(45):17175-87. doi: 10.1021/acs.jafc.3c05012.
5
Viruses in Laboratory and Their Impact on Host Gene Expression.
Viruses. 2023 Aug 31;15(9):1849. doi: 10.3390/v15091849.
7
Unraveling the Role of Antimicrobial Peptides in Insects.
Int J Mol Sci. 2023 Mar 17;24(6):5753. doi: 10.3390/ijms24065753.
8
Drosophila caspases as guardians of host-microbe interactions.
Cell Death Differ. 2023 Feb;30(2):227-236. doi: 10.1038/s41418-022-01038-4. Epub 2022 Jul 9.
10
Advances in the Immune Regulatory Role of Non-Coding RNAs (miRNAs and lncRNAs) in Insect-Pathogen Interactions.
Front Immunol. 2022 Apr 6;13:856457. doi: 10.3389/fimmu.2022.856457. eCollection 2022.

本文引用的文献

1
A virus-acquired host cytokine controls systemic aging by antagonizing apoptosis.
PLoS Biol. 2018 Jul 23;16(7):e2005796. doi: 10.1371/journal.pbio.2005796. eCollection 2018 Jul.
2
Isolation of a natural DNA virus of Drosophila melanogaster, and characterisation of host resistance and immune responses.
PLoS Pathog. 2018 Jun 4;14(6):e1007050. doi: 10.1371/journal.ppat.1007050. eCollection 2018 Jun.
3
p38b and JAK-STAT signaling protect against Invertebrate iridescent virus 6 infection in Drosophila.
PLoS Pathog. 2018 May 10;14(5):e1007020. doi: 10.1371/journal.ppat.1007020. eCollection 2018 May.
5
Natural Variation in Resistance to Virus Infection in Dipteran Insects.
Viruses. 2018 Mar 9;10(3):118. doi: 10.3390/v10030118.
6
The dynamic evolution of Drosophila innubila Nudivirus.
Infect Genet Evol. 2018 Jan;57:151-157. doi: 10.1016/j.meegid.2017.11.013. Epub 2017 Nov 16.
7
The Perseus computational platform for comprehensive analysis of (prote)omics data.
Nat Methods. 2016 Sep;13(9):731-40. doi: 10.1038/nmeth.3901. Epub 2016 Jun 27.
8
Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):698-703. doi: 10.1073/pnas.1516122113. Epub 2016 Jan 6.
9
Microbiota-Dependent Priming of Antiviral Intestinal Immunity in Drosophila.
Cell Host Microbe. 2015 Nov 11;18(5):571-81. doi: 10.1016/j.chom.2015.10.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验