Suppr超能文献

在智慧城市应用中使用连续目标导向动作进行真实评估的可操作性。

Real Evaluations Tractability using Continuous Goal-Directed Actions in Smart City Applications.

机构信息

Robotics Lab Research Group within the Department of Systems Engineering and Automation, Universidad Carlos III de Madrid (UC3M), Getafe, 28903 Madrid, Spain.

出版信息

Sensors (Basel). 2018 Nov 7;18(11):3818. doi: 10.3390/s18113818.

Abstract

One of the most important challenges of Smart City Applications is to adapt the system to interact with non-expert users. Robot imitation frameworks aim to simplify and reduce times of robot programming by allowing users to program directly through action demonstrations. In classical robot imitation frameworks, actions are modelled using joint or Cartesian space trajectories. They accurately describe actions where geometrical characteristics are relevant, such as fixed trajectories from one pose to another. Other features, such as visual ones, are not always well represented with these pure geometrical approaches. Continuous Goal-Directed Actions (CGDA) is an alternative to these conventional methods, as it encodes actions as changes of any selected feature that can be extracted from the environment. As a consequence of this, the robot joint trajectories for execution must be fully computed to comply with this feature-agnostic encoding. This is achieved using Evolutionary Algorithms (EA), which usually requires too many evaluations to perform this evolution step in the actual robot. The current strategies involve performing evaluations in a simulated environment, transferring only the final joint trajectory to the actual robot. Smart City applications involve working in highly dynamic and complex environments, where having a precise model is not always achievable. Our goal is to study the tractability of performing these evaluations directly in a real-world scenario. Two different approaches to reduce the number of evaluations using EA, are proposed and compared. In the first approach, Particle Swarm Optimization (PSO)-based methods have been studied and compared within the CGDA framework: naïve PSO, Fitness Inheritance PSO (FI-PSO), and Adaptive Fuzzy Fitness Granulation with PSO (AFFG-PSO). The second approach studied the introduction of geometrical and velocity constraints within the CGDA framework. The effects of both approaches were analyzed and compared in the "wax" and "paint" actions, two CGDA commonly studied use cases. Results from this paper depict an important reduction in the number of required evaluations.

摘要

智慧城市应用面临的最重要挑战之一是使系统适应与非专业用户交互。机器人模仿框架旨在通过允许用户通过动作演示直接进行编程来简化和减少机器人编程的时间。在经典的机器人模仿框架中,动作是使用关节空间或笛卡尔空间轨迹来建模的。它们准确地描述了与几何特征相关的动作,例如从一个姿势到另一个姿势的固定轨迹。其他特征,例如视觉特征,并不总是用这些纯几何方法很好地表示。连续目标导向动作 (CGDA) 是这些传统方法的替代方法,因为它将动作编码为可以从环境中提取的任何选定特征的变化。因此,为了遵守这种无特征的编码,必须完全计算用于执行的机器人关节轨迹。这是通过使用进化算法 (EA) 实现的,这通常需要进行太多评估才能在实际机器人中执行此进化步骤。当前的策略涉及在模拟环境中进行评估,仅将最终的关节轨迹传输到实际机器人。智慧城市应用涉及在高度动态和复杂的环境中工作,在这些环境中,拥有精确的模型并不总是可行的。我们的目标是研究在实际场景中直接执行这些评估的可行性。提出并比较了两种使用 EA 减少评估数量的不同方法。在第一种方法中,研究了基于粒子群优化 (PSO) 的方法并将其与 CGDA 框架进行了比较:原始 PSO、适应度继承 PSO (FI-PSO) 和基于 PSO 的自适应模糊适应度粒度化 (AFFG-PSO)。第二种方法研究了在 CGDA 框架中引入几何和速度约束的方法。在“蜡”和“油漆”两个常用的 CGDA 用例中分析和比较了这两种方法的效果。本文的结果表明,所需评估数量大大减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b514/6264046/70f6f3e29bb5/sensors-18-03818-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验